Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2022, volume 23, issue 1, pages 5-11.
Section: Nuclear Physics.
Received: 15.11.2021; Accepted: 29.06.2022; Published online: 25.07.2022.
PDF Full text (en)
https://doi.org/10.15407/jnpae2022.01.005

Cross-section calculations of photofission reactions for 238,239,240,241,242,244Pu isotopes using nuclear level density

D. Canbula1,*, B. Canbula2

1 Department of Alternative Energy Resources Technology, Manisa Celal Bayar University, Manisa, Turkey
2 Department of Computer Engineering, Manisa Celal Bayar University, Manisa, Turkey


*Corresponding author. E-mail address: deniz.canbula@cbu.edu.tr

Abstract: Photofission cross-sections of 238,239,240,241,242,244Pu isotopes are theoretically investigated with the collective semi-classical Fermi gas model (CSCFGM) by using Talys computer code in the energy range 1 - 30 MeV. Nuclear level density has significant importance to define the structural properties of nuclei. CSCFGM is a nuclear level density model, that includes collective (rotational and vibrational) effects as well as the pairing and shell effects, and is used to analyse the (γ, f) reactions of plutonium isotopes. The experimental data for all reactions are taken from EXFOR library. The theoretical predictions are in agreement with the experimental data, Talys code without changing the input, and the evaluated nuclear cross-section data from TENDL 2021 library.

Keywords: photofission reaction, Talys, nuclear level density, plutonium isotopes.

References:

1. Handbook on Photonuclear Data for Applications Cross Sections and Spectra. Final Report of a Co-ordinated Research Project 1996 - 1999. IAEA-TECDOC-1178 (Vienna: IAEA, 2000) 284 p. https://www-pub.iaea.org/MTCD/Publications/PDF/te_1178_prn.pdf

2. B. Canbula. Collective effects in deuteron induced reactions of aluminum. Nucl. Instr. Meth. B 391 (2017) 73. https://doi.org/10.1016/j.nimb.2016.11.006

3. D. Canbula. Cross section analysis of proton-induced nuclear reactions of thorium. Nucl. Instr. Meth. B 478 (2020) 229. https://doi.org/10.1016/j.nimb.2020.06.041

4. D.L. Clark et al. Plutonium. In: The Chemistry of the Actinide and Transactinide Elements. L.R. Morss, N.M. Edelstein, J. Fuger (Eds). Ch. 7 (Netherlands: Springer, 2016) p. 813. https://doi.org/10.1007/1-4020-3598-5_7

5. V.S. Mallela, V. Ilankumaran, N.S. Rao. Trends in cardiac pacemaker batteries. Indian Pacing Electrophysiol. J. 4(4) (2004) 201. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1502062/

6. S.P. Kapitza et al. Photofission of even-even nuclei and structure of the fission barrier. JETP Lett. (USSR) (Eng. transl.) 9 (1969) 73. http://jetpletters.ru/ps/1658/article_25291.pdf

7. A. Shapiro, W.F. Stubbins. Photofission cross section of plutonium-238 and plutonium-239. Nucl. Sci. Eng. 45(1) (1971) 47. https://doi.org/10.13182/NSE71-A20344

8. A.S. Soldatov. Photofission cross-section of plutonium-238, plutonium-240 and plutonium-242 in the energy region from 5 to 10 MeV. In: Progress report. January 1997 - December 1998. B. Kuzminov (Ed.) INDC(CCP)-420 (Russian Federation, Obninsk, 1998) p. 31. https://www-nds.iaea.org/publications/indc/indc-ccp-0420.pdf

9. A.S. Soldatov et al. Photofission of 238Pu, 240Pu, and 242Pu in the energy range 5 - 10 MeV. Phys. At. Nucl. 63 (2000) 31. https://doi.org/10.1134/1.855603

10. L. Katz, A.P. Baerg, F. Brown. Photofission in heavy elements. A/CONF. 15/P/200. (Chalk River, Ontario, Atomic Energy of Canada Ltd., 1958). Google books

11. V.E. Zhuchko et al. Investigation of probability of Th, U, Np, Pu, Am isotope fission near threshold by bremsstrahlung gamma quanta. Yadernaya Fizika (USSR) 28(5) (1978) 602. Article

12. Yu.B. Ostapenko et al. Yields and Cross Sections of Photofission for Isotopes Th, U, Np, and Am in Energy Range from 4.5 MeV to 7.0 MeV. Voprosy Atomnoy Nauki i Tekhniki. Seriya Yadernye Konstanty 3 (1978) 3.

13. B.L. Berman et al. Photofission and photoneutron cross sections and photofission neutron multiplicities for 233U, 234U, 237Np, and 239Pu. Phys. Rev. C 34(6) (1986) 2201. https://doi.org/10.1103/PhysRevC.34.2201

14. M. Antonio, P.V. De Moraes. M.F. Cesar. Photofission cross sections of 233U and 239Pu near threshold induced by gamma rays from thermal neutron capture. Nucl. Instr. Meth. A 277 (1989) 467. https://doi.org/10.1016/0168-9002(89)90776-6

15. A.S. Soldatov, G.N. Smirenkin. Results of relative measuring of photofission yields and cross sections for nuclei 233,235U, 237Np, 239,241Pu and 241Am in the energy region 5 - 11 MeV. Yadernaya Fizika (USSR) 55 (1992) 3153.

16. A.S. Soldatov, G.N. Smirenkin. Yield and cross section for fission of odd nuclei by γ rays with energies up to 11 MeV. Phys. At. Nucl. 55 (1992) 1757.

17. M. Antonio, P.V. De Moraes. M.F. Cesar. Photonuclear cross sections of Pu-239 using neutron capture gamma rays, near threshold. Physica Scripta 47(4) (1993) 519. https://doi.org/10.1088/0031-8949/47/4/008

18. H. Thierens et al. Kinetic energy and fragment mass distributions for 240Pu(s.f.), 239Pu(nth, f), and 240Pu(γ, f). Phys. Rev. C 23(5) (1981) 2104. https://doi.org/10.1103/PhysRevC.23.2104

19. H. Thierens et al. Fragment mass and kinetic energy distributions for 242Pu(sf), 241Pu(nth, f), and 242Pu(γ, f). Phys. Rev. C 29(2) (1984) 498. https://doi.org/10.1103/PhysRevC.29.498

20. M. Wallenius, K. Mayer. Age determination of plutonium material in nuclear forensics by thermal ionisation mass spectrometry. Fresenius J. Anal. Chem. 366(3) (2000) 234. https://doi.org/10.1007/s002160050046

21. S.R. Winkler et al. Anthropogenic 244Pu in the environment. New Astronomy Reviews 48(1-4) (2004) 151. https://doi.org/10.1016/j.newar.2003.11.021

22. H. Thierens et al. Kinetic energy and fragment mass distributions for the spontaneous and photon-induced fission of 244Pu. Phys. Rev. C 27(3) (1983) 1117. https://doi.org/10.1103/PhysRevC.27.1117

23. A.J. Koning, S. Hilaire, M.C. Duijvestijn. TALYS-1.0. In: Int. Conf. on Nucl. Data for Sci. and Techn., Nice, France, April 22 - 27, 2007 (EDP Sciences, 2007) p. 211. https://doi.org/10.1051/ndata:07767

24. H.A. Bethe. Nuclear physics B. Nuclear dynamics, theoretical. Rev. Mod. Phys. 9 (1937) 69. https://doi.org/10.1103/RevModPhys.9.69

25. P. Demetriou, S. Goriely. Microscopic nuclear level densities for practical applications. Nucl. Phys. A 695 (2001) 95. https://doi.org/10.1016/S0375-9474(01)01095-8

26. W. Dilg et al. Level density parameters for the back-shifted Fermi gas model in the mass range 40 < A < 250. Nucl. Phys. A 217(2) (1973) 269. https://doi.org/10.1016/0375-9474(73)90196-6

27. A. Gilbert, A.G.W. Cameron. A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43(8) (1965) 1446. https://doi.org/10.1139/p65-139

28. S. Hilaire, S. Goriely. Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications. Nucl. Phys. A 779 (2006) 63. https://doi.org/10.1016/j.nuclphysa.2006.08.014

29. J.A. Holmes et al. Tables of thermonuclear-reaction-rate data for neutron-induced reactions on heavy nuclei. At. Data Nucl. Data Tables 18 (1976) 305. https://doi.org/10.1016/0092-640X(76)90011-5

30. B. Krusche, K.P. Lieb. Dipole transition strengths and level densities in A ≤ 80 odd-odd nuclei obtained from thermal neutron capture. Phys. Rev. C 34(6) (1986) 2103. https://doi.org/10.1103/PhysRevC.34.2103

31. B. Nerlo-Pomorska et al. Nuclear level densities within the relativistic mean-field theory. Phys. Rev. C 66(5) (2002) 051302. https://doi.org/10.1103/PhysRevC.66.051302

32. B. Nerlo-Pomorska, K. Pomorski. Pairing energy obtained by folding in the nucleon number space. Int. J. Mod. Phys. E 15(2) (2006) 471. https://doi.org/10.1142/S0218301306004387

33. B. Nerlo-Pomorska, K. Pomorski, J. Bartel. Shell energy and the level-density parameter of hot nuclei. Phys. Rev. C 74(3) (2006) 034327. https://doi.org/10.1103/PhysRevC.74.034327

34. T.D. Newton. Shell effects on the spacing of nuclear levels. Can. J. Phys. 34(8) (1956) 804. https://doi.org/10.1139/p56-090

35. T. Von Egidy, H.H. Schmidt, A.N. Behkami. Nuclear level densities and level spacing distributions: Part II. Nucl. Phys. A 481 (1988) 189. https://doi.org/10.1016/0375-9474(88)90491-5

36. T. Ericson. The statistical model and nuclear level densities. Advan. Phys. 9(36) (1960) 425. https://doi.org/10.1080/00018736000101239

37. B. Canbula et al. A Laplace-like formula for the energy dependence of the nuclear level density parameter. Nucl. Phys. A 929 (2014) 54. https://doi.org/10.1016/j.nuclphysa.2014.05.020

38. A. Bohr, B.R. Mottelson. Nuclear structure. Vol. 1 (London: World Scientific, 1998) 492 p. https://doi.org/10.1142/3530

39. W.D. Myers, W.J. Swiatecki. Nuclear Masses and Deformations. Nucl. Phys. 81 (1966) l. https://doi.org/10.1016/0029-5582(66)90639-0

40. B. Canbula et al. Effects of single-particle potentials on the level density parameter. Eur. Phys. J. A 50 (2014) 178. https://doi.org/10.1140/epja/i2014-14178-6

41. R. Capote et al. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nucl. Data Sheets 110(12) (2009) 3107. https://doi.org/10.1016/j.nds.2009.10.004

42. A.J. Koning et al. TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology. Nucl. Data Sheets 155 (2019) 1. https://doi.org/10.1016/j.nds.2019.01.002