С. Ю. Межевич^{1,*}, А. Т. Рудчик¹, К. Русек², К. В. Кемпер³, А. А. Рудчик¹, О. А. Понкратенко¹, Є. І. Кощий⁴

¹ Інститут ядерних досліджень НАН України, Київ, Україна ² Лабораторія важких іонів Варшавського університету, Варшава, Польща ³ Відділ фізики Флоридського державного університету, Таллахассі, США ⁴ Циклотронний інститут Техаського А&М університету, Колледж Стейшен, США

*Відповідальний автор: sermezhev@gmail.com

РЕАКЦІЯ ¹⁴C(¹¹B, ¹²C)¹³В ПРИ ЕНЕРГІЇ $E_{лаб.}$ (¹¹B) = 45 МеВ, ВЗАЄМОДІЯ ЯДЕР ¹³B + ¹²C ТА ^{10,11,12}B + ¹²C

Нещодавно отримані нові експериментальні дані диференціальних перерізів реакції ${}^{14}C({}^{11}B, {}^{12}C){}^{13}B$ при енергії $E_{\pi a 6}({}^{11}B) = 45$ МеВ для основних станів ядер ${}^{13}B$ та ${}^{12}C$ проаналізовано за методом зв'язаних каналів реакцій (МЗКР), у схему зв'язку було включено канал пружного розсіяння ядер ${}^{11}B + {}^{14}C$ та канали одно- й двоступінчастих передач нуклонів і кластерів. Для вхідного каналу реакції необхідні параметри оптичного потенціалу Вудса - Саксона було використано з аналізу пружного розсіяння ${}^{11}B$ з попередньої роботи, а параметри для взаємодії ${}^{12}C + {}^{13}B$ було отримано з підгонки МЗКР-розрахунків до експериментальних даних реакції ${}^{14}C({}^{11}B, {}^{12}C){}^{13}B$. Необхідні спектроскопічні амплітуди (фактори) для переданих нуклонів і кластерів було обчислено за трансляційно-інваріантною моделлю оболонок. Дані добре описуються прямою передачею протона, а вклади двоступінчастих реакцій передач виявились незначними. Проведено порівняння параметрів потенціалу Вудса - Саксона, визначених для взаємодії ядер ${}^{13}B + {}^{12}C$, з параметрами цих потенціалів для систем ${}^{10,11,12}B + {}^{12}C$. Спостерігається ефект ізотопічної відмінності цих взаємодій.

Ключові слова: ядерна реакція ¹⁴C(¹¹B, ¹²C)¹³B, метод зв'язаних каналів реакцій, спектроскопічні амплітуди, оптичні потенціали, механізми реакцій.

S. Yu. Mezhevych^{1,*}, A. T. Rudchik¹, K. Rusek², K. W. Kemper³, A. A. Rudchik¹, O. A. Ponkratenko¹, E. I. Koshchy⁴

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
² Heavy Ion Laboratory of Warsaw University, Warsaw, Poland
³ Physics Department, Florida State University, Tallahassee, USA
⁴ Cyclotron Institute Texas A&M University, College Station, USA

*Corresponding author: sermezhev@gmail.com

REACTION ${}^{14}C({}^{11}B, {}^{12}C){}^{13}B$ AT $E_{lab}({}^{11}B) = 45$ MeV, INTERACTION OF ${}^{13}B + {}^{12}C$ VERSUS THAT OF ${}^{10,11,12}B + {}^{12}C$

New experimental data for differential cross-sections of the ${}^{14}C({}^{11}B, {}^{12}C){}^{13}B$ reaction obtained recently at the energy $E_{lab}({}^{11}B) = 45$ MeV for the ground states of ${}^{13}B$ and ${}^{12}C$ were analyzed within the coupled reaction channels (CRC) method that included the ${}^{11}B + {}^{14}C$ elastic scattering channel as well as channels for one- and two-step transfers of nucleons in the coupling scheme. The necessary ${}^{11}B + {}^{14}C$ Woods - Saxon (WS) optical potential parameters for the entrance reaction channel were obtained from ${}^{11}B$ elastic scattering in the previous work, while those for ${}^{12}C + {}^{13}B$ interaction were deduced from fitting the CRC calculations to the ${}^{14}C({}^{11}B, {}^{12}C){}^{13}B$ reaction data. Needed spectroscopic amplitudes of transferred nucleons and clusters were calculated within the translational-invariant shell model. The data are well described by the direct transfer of a proton while contributions from two-step transfers were found to be negligible. The deduced ${}^{13}B + {}^{12}C$ WS optical potential parameters are compared with those of the ${}^{10,11,12}B + {}^{12}C$ nuclei interactions. The effect of isotopic differences in these interactions was observed.

Keywords: nuclear reaction ¹⁴C(¹¹B, ¹²C)¹³B, coupled-reaction-channels method, spectroscopic amplitudes, optical potentials, reaction mechanisms.

REFERENCES

- 1. A. Estradé et al. Proton Radii of ¹²⁻¹⁷B Define a Thick Neutron Surface in ¹⁷B. Phys. Rev. Lett. 113 (2014) 132501.
- 2. R. Kalpakchieva et al. Spectroscopy of ¹³B, ¹⁴B, ¹⁵B and ¹⁶B using multi-nucleon transfer reactions. Eur. Phys. J. A 7 (2000) 451.
- 3. B.B. Back et al. First Experiment with HELIOS: The Structure of ¹³B. Phys. Rev. Lett. 104(13) (2010) 132501.
- 4. A.H. Wuosmaa et al. Stretched states in 12,13 B with the (d, α) reaction. Phys. Rev. C 90 (2014) 061301.
- 5. C.J. Guess et al. Spectroscopy of ¹³B via the ¹³C(t, ³He) reaction at 115A MeV. Phys. Rev. C 80 (2009) 024305.
- 6. S. Bedoor et al. Structure of ¹⁴C and ¹⁴B from the ^{14,15}C(d, ³He)^{13,14}B reactions. Phys. Rev. C 93(4) (2016) 044323.

- 7. H.Y. Lee et al. Experimental study of the ${}^{11,12}B(n, \gamma)$ reactions and their influence on r-process nucleosynthesis of light elements. Phys. Rev. C 81 (2010) 015802.
- 8. S.Yu. Mezhevych et al. ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ reaction at 45 MeV, ${}^{12}C + {}^{12}B$ interaction versus that of ${}^{12}C + {}^{10,11}B$. Acta Phys. Pol. B 51(10) (2020) 1949.
- 9. A.T. Rudchik et al. The ¹¹B + ¹²C elastic and inelastic scattering at $E_{lab}(^{11}B) = 49$ MeV and energy dependence of the ¹¹B + ¹²C interaction. Nucl. Phys. A 695 (2001) 51.
- 10. N. Burtebayev et al. Measurement and analysis of ¹⁰B + ¹²C elastic scattering at energy of 41.3 MeV. Int. J. Mod. Phys. E 28 (2019) 1950028.
- 11. S.Yu. Mezhevych et al. Extracting the asymptotic normalization coefficient for the ${}^{14}C \rightarrow {}^{13}B + p$ overlap from the ${}^{14}C({}^{11}B, {}^{12}C){}^{13}B$ reaction. Phys. Rev. C 105 (2022) 024615.
- 12. Yong-Li Xu et al. Applicability of ⁹Be global optical potential to description of ^{8,10,11}B elastic scattering. Chinese Physics C 44(3) (2020) 034101.
- 13. Suhel Ahmad, A.A. Usmani, Z.A. Khan. Matter radii of light proton-rich and neutron-rich nuclear isotopes. Phys. Rev. C 96 (2017) 064602.
- 14. S.Yu. Mezhevych et al. Reaction ${}^{14}C({}^{11}B, {}^{10}B){}^{15}C$ at $E_{lab} = 45$ MeV and ${}^{10}B + {}^{15}C$ optical potential. Acta Phys. Pol. B 52(2) (2021) 109.
- 15. S.Yu. Mezhevych et al. The ${}^{13}C + {}^{11}B$ elastic and inelastic scattering and isotopic effects in the ${}^{12,13}C + {}^{11}B$ scattering. Nucl. Phys. A 724(1-2) (2003) 29.
- 16. S.Yu. Mezhevych et al. Elastic and inelastic scattering of ${}^{14}C + {}^{11}B$ versus ${}^{12,13}C + {}^{11}B$. Eur. Phys. J. A 50 (2014) 4.
- 17. S.Yu. Mezhevych et al. Excitation of ¹⁴C by 45 MeV ¹¹B ions. Nucl. Phys. A 753 (2005) 13.
- Yu.F. Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the *p*-shell nuclei. Phys. Rev. C 15 (1977) 84.
- 19. A.T. Rudchik, Yu.M. Tchuvil'sky. Spectroscopic amplitudes of multinucleon clusters in 1p-shell nuclei and analysis of multinucleon transfer reactions. Ukrainian Journal of Physics 30(6) (1985) 819. (Rus)
- A.T. Rudchik, Yu.M. Tchuvil'sky. Calculation of spectroscopic amplitudes for arbitrary associations of nucleus in 1p-shell nuclei (program DESNA). Prepr. of the Institute for Nucl. Res., AS UkrSSR. KINR-82-12 (Kyiv, 1982) 27 p. (Rus)
- 21. A.N. Boyarkina. The Structure of the 1p-shell Nuclei (Moskva: Moscow University, 1973) 62 p. (Rus)
- 22. I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- 23. S.Yu. Mezhevych, K. Rusek. Quadrupole deformation of ¹¹B ($3/2^{-}$, 5.02 MeV) excited state from ¹¹B + ¹²C scattering. Acta Phys. Pol. B 34(4) (2003) 2415.
- 24. G. Bertsch et al. Interactions for inelastic scattering derived from realistic potentials. Nucl. Phys. A 284(3) (1977) 399.
- 25. J. Cook. DFPOT A program for the calculation of double folded potentials. Comput. Phys. Commun. 25 (1982) 125.

Надійшла/Received 23.11.2021