Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2021, volume 22, issue 4, pages 343-347.
Section: Nuclear Physics.
Received: 10.12.2021; Accepted: 27.04.2022; Published online: 4.06.2022.
PDF Full text (en)
https://doi.org/10.15407/jnpae2021.04.343

Determination of the nuclear radius parameter using the γ-ray spectrometer

Prashant N. Patil1,2, G. B. Hiremath1,2, A. Vinayak2, M. M. Hosamani2, V. P. Singh2, N. M. Badiger1,2,*

1 School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, India
2 Department of Studies in Physics, Karnatak University, Dharwad, India


*Corresponding author. E-mail address: nbadiger@gmail.com

Abstract: The nuclear radius parameter of carbon, aluminium, iron, copper, and zinc nuclei has been determined by using (n,γ)-reaction. The neutrons from the americium-beryllium source are made to interact with the water moderator to produce the γ-rays of 2.2 MeV through (n,γ)-reaction. The γ-radiation emitted from the water medium is measured with a scintillation detector coupled to 8k multi-channel analyzer. The neutrons from the americium-beryllium source are allowed to transmit through carbon, aluminium, iron, copper, and zinc elemental targets of various thicknesses, and transmitted neutrons are again allowed to interact with water moderators to produce 2.2 MeV γ-radiation. By measuring the yield of γ-radiation produced in water moderators by neutrons transmitted through elemental targets of different mass number values, the total neutron interaction cross-sections are determined. By knowing the total neutron interaction cross-sections and mass number of the target nuclei, the radius parameter has been determined.

Keywords: americium-beryllium neutron source, scintillation detector, neutron interaction cross-section, nuclear radius parameter, (n,γ)-reaction.

References:

1. S.B. Hosur, N.M. Badiger. Determination of rest mass energy of the electron - an undergraduate laboratory experiment. Eur. J. Phys. 28 (2008) 1233. https://doi.org/10.1088/0143-0807/28/6/020

2. S. Prasannakumar, S. Krishveni, T.K. Umesh. Determination of rest mass energy by a Compton scattering experiment. Eur. J. Phys. 33 (2011) 65. https://doi.org/10.1088/0143-0807/33/1/005

3. S.V. Nayak, N.M. Badiger. Measurement of K-shell photoelectric absorption parameters of Hf, Ta, Au and Pb by an alternative method using a weak β particle source. Phys. Rev. C 73 (2006) 032707. https://doi.org/10.1103/PhysRevA.73.032707

4. V. Manjunathagaru, T.K. Umesh. Total interaction cross section and effective atomic numbers of some biologically important compounds containing H, C, N and O in the energy range 6.4 MeV - 136 keV. J. Phys. B 40 (2011) 3707. https://doi.org/10.1088/0953-4075/40/18/010

5. M.M. Hosamani, N.M. Badiger. Determination of effective atomic number of composite materials using backscattered gamma photons – a novel method. Chem. Phys. Lett. 695 (2018) 94. https://doi.org/10.1016/j.cplett.2018.02.012

6. M.M. Hosamani, S.R. Babu, N.M. Badiger. Measurement of effective atomic number of some transition and rare earth compounds using the Rayleigh to Compton scattering ratio of gamma radiation. Spectrosc. Lett. 50 (2017) 370. https://doi.org/10.1080/00387010.2017.1332650

7. M.M. Hosamani et al. Determination of effective atomic number of multifunctional materials using backscattered beta particles - a novel method. Spectrosc. Lett. 53 (2020) 132. https://doi.org/10.1080/00387010.2019.1707228

8. S.B. Gudennavar et al. Verification of Bohr’s frequency condition and Moseley’s law: An undergraduate experiment. Am. J. Phys. 71 (2003) 822. https://doi.org/10.1119/1.1568969

9. K.S. Krane. Introductory Nuclear Physics. 3rd ed. (New York: John Wiley & Sons, 1988) 864 p. https://www.wiley.com/en-gb/Introductory+Nuclear+Physics%2C+3rd+Edition-p-9780471805533

10. A. Adamu, Y.H. Ngadda. Determination of Nuclear Potential Radii and Its Parameter from Finite-Size Nuclear Model. Int. J. of Theor. Math. Phys. 7 (2017) 9. http://article.sapub.org/10.5923.j.ijtmp.20170701.03.html

11. Aliyu Adamu. A New Measurement of Nuclear Radius form the study of β+ decay energy of finite sized nuclei. J. Rad. Nucl. Appl. 6(1) (2021) 45. https://doi.org/10.18576/jrna/060107

12. C. Ozhasoglu, M.L. Rustgi. Nuclear charge density radius parameter and the β decay between mirror nuclei. Can. J. Phys. 71 (1993) 162. https://doi.org/10.1139/p93-026

13. A. Adamu, F.M. Mustapha, M.K. Dikwa. Determination of nuclear radius parameter from β+ transformation energy of mirror nuclei. J. Sci. Technol. Res. 1(1) (2019) 137. https://nipesjournals.org.ng/wp-content/uploads/2020/09/2019_2_015_NJSTR_NIPES.pdf

14. Z. Sheng et al. An effective formula for nuclear charge radii. Eur. Phys. J. A 51 (2015) 40. https://doi.org/10.1140/epja/i2015-15040-1

15. G. Royer, R. Rousseau. On the liquid drop model mass formulae and charge radii. Eur. Phys. J. A 42 (2009) 541. https://doi.org/10.1140/epja/i2008-10745-8

16. F.S. Dietrich et al. Deviation of nuclear radii from a smooth A dependence for neutron data. Int. Conf. on Nuclear Data for Science and Technology (2007) p. 163. https://doi.org/10.1051/ndata:07309

17. T. Bayram et al. New parameters for nuclear charge radius formulas. Acta Phys. Pol. B 44(8) (2013) 1791. https://doi.org/10.5506/APhysPolB.44.1791

18. A.M. Abdelbagi. The investigation of the neutron total cross section and measurement of the nuclear radius with comparison of Ramsauer model. Int. J. Pure Appl. Phys. 13(3) (2017) 495. https://www.ripublication.com/ijpap17/ijpapv13n3_23.pdf

19. T.S. Mudhole, N. Umakantha. Binding energy of the deuteron: A laboratory experiment. Am. J. Phys. 43 (1975) 104. https://doi.org/10.1119/1.10038

20. T.C. Minor et al. Undergraduate experiment to find nuclear sizes by measuring total cross sections for fast neutrons. Am. J. Phys. 37 (1969) 649. https://doi.org/10.1119/1.1975735

21. R.D. Evans. The Atomic Nucleus (Bombay-New Delhi: Tata Mcgraw-Hill Publishing Company Ltd, 1955) p. 94. https://library.psfc.mit.edu/catalog/online_pubs/books/evans_atomic_nucleus.pdf

22. M.M. Hosamani, A.S. Bennal, N.M. Badiger. Determination of the thermal neutron flux by measuring gamma radiations with high and low resolution detectors. J. Nucl. Phys. Mat. Sci. Rad. Appl. A 6 (2019) 178. https://doi.org/10.15415/jnp.2019.62027

23. J. Scherzinger et al. Tagging fast neutrons from an 241Am/9Be source. Appl. Radiat. Isot. 98 (2015) 74. https://doi.org/10.1016/j.apradiso.2015.01.003

24. P.A. Seeger. Semiempirical atomic mass law. Nucl. Phys. 25 (1961) 1. https://doi.org/10.1016/0029-5582(61)90147-X