ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Further results from DAMA/LIBRA-phase2 and perspectives
R. Bernabei1,2,*, P. Belli1,2, A. Bussolotti1,2, V. Caracciolo1,2, F. Cappella3,4, R. Cerulli1,2, C. J. Dai5, A. d’Angelo3,4, N. Ferrari1,2, A. Incicchitti3,4, A. Leoncini1,2, X. H. Ma5, A. Mattei3,4, V. Merlo1,2, F. Montecchia1,2,6, X. D. Sheng5, Z. P. Ye5,7
1 Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy
2 INFN, Sezione Roma "Tor Vergata", Rome, Italy
3 Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy
4 INFN, Sezione Roma, Rome, Italy
5 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, P.R. China
6 Dipartimento Ingegneria Civile e Ingegneria Informatica, Università di Roma "Tor Vergata", Rome, Italy
7 University of Jinggangshan, Ji’an, Jiangxi, P.R. China
*Corresponding author. E-mail address:
rita.bernabei@roma2.infn.it
Abstract: The data collected by the DAMA/LIBRA-phase2 set-up during two additional annual cycles have been analyzed, further investigating the long-standing model-independent annual modulation effect pointed out by DAMA deep underground at the Gran Sasso National Laboratory of the I.N.F.N. by using various different experimental configurations. Including the new results, the total exposure of DAMA/LIBRA-phase2 over 8 annual cycles is 1.53 t·yr and the evidence for a signal that meets all the requirements of the model-independent Dark Matter annual modulation signature is 11.8 σ C.L. in the energy region (1 - 6) keV. In the (2 - 6) keV energy interval, where data are also available from DAMA/NaI and DAMA/LIBRA-phase1, the achieved C.L. for the full exposure of 2.86 t·yr is 13.7 σ. No systematics or side reaction able to mimic this signature (i.e., to account for the whole measured modulation amplitude and to simultaneously satisfy all the requirements of the signature) has been found or suggested by anyone throughout some decades thus far. A preliminary result on the further lowering of the software energy threshold and perspectives are also mentioned.
Keywords: Dark Matter, elementary particle processes, scintillation detectors.
References:1. R. Bernabei et al. The DAMA/LIBRA apparatus. Nucl. Instrum. Methods A 592(3) (2008) 297. https://doi.org/10.1016/j.nima.2008.04.082
2. R. Bernabei et al. First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56 (2008) 333. https://doi.org/10.1140/epjc/s10052-008-0662-y
3. R. Bernabei et al. New results from DAMA/LIBRA. Eur. Phys. J. C 67 (2010) 39. https://doi.org/10.1140/epjc/s10052-010-1303-9
4. R. Bernabei et al. Final model independent result of DAMA/LIBRA-phase1. Eur. Phys. J. C 73 (2013) 2648. https://doi.org/10.1140/epjc/s10052-013-2648-7
5. R. Bernabei et al. Dark Matter investigation by DAMA at Gran Sasso. Int. J. of Mod. Phys. A 28 (2013) 1330022. https://doi.org/10.1142/S0217751X13300226
6. R. Bernabei et al. Improved model-dependent corollary analyses after the first six annual cycles of DAMA/LIBRA-phase2. J. of Instr. 7 (2012) P03009. https://doi.org/10.1088/1748-0221/7/03/P03009
7. R. Bernabei et al. No role for muons in the DAMA annual modulation results. Eur. Phys. J. C 72 (2012) 2064. https://doi.org/10.1140/epjc/s10052-012-2064-4
8. R. Bernabei et al. No role for neutrons, muons and solar neutrinos in the DAMA annual modulation results. Eur. Phys. J. C 74 (2014) 3196. https://doi.org/10.1140/epjc/s10052-014-3196-5
9. DAMA coll., issue dedicated to DAMA. Int. J. of Mod. Phys. A 31 (2016) and Refs therein. https://doi.org/10.1142/S0217751X1642001X
10. R. Bernabei et al. Model independent result on possible diurnal effect in DAMA/LIBRA-phase1. Eur. Phys. J. C 74 (2014) 2827. https://doi.org/10.1140/epjc/s10052-014-2827-1
11. R. Bernabei et al. New search for processes violating the Pauli exclusion principle in sodium and in iodine. Eur. Phys. J. C 62 (2009) 327. https://doi.org/10.1140/epjc/s10052-009-1068-1
12. R. Bernabei et al. Search for charge non-conserving processes in 127I by coincidence technique. Eur. Phys. J. C 72 (2012) 1920. https://doi.org/10.1140/epjc/s10052-012-1920-6
13. R. Bernabei et al. New search for correlated e+e- pairs in the α decay of 241Am. Eur. Phys. J. A 49 (2013) 64. https://doi.org/10.1140/epja/i2013-13064-1
14. R. Bernabei et al. Investigating Earth shadowing effect with DAMA/LIBRA-phase1. Eur. Phys. J. C 75 (2015) 239. https://doi.org/10.1140/epjc/s10052-015-3473-y
15. P. Belli et al. Observations of annual modulation in direct detection of relic particles and light neutrallinos. Phys. Rev. D 84 (2011) 055014. https://doi.org/10.1103/PhysRevD.84.055014
16. A. Addazi et al. DAMA annual modulation effect and asymmetric mirror matter. Eur. Phys. J. C 75 (2015) 400. https://doi.org/10.1140/epjc/s10052-015-3634-z
17. R. Bernabei et al. The DAMA project. Int. J. of Mod. Phys. A 31 (2016) 1642009. https://doi.org/10.1142/S0217751X1642001X
18. R. Cerulli et al. DAMA annual modulation and mirror Dark Matter. Eur. Phys. J. C 77 (2017) 83. https://doi.org/10.1140/epjc/s10052-017-4658-3
19. R. Bernabei et al. First Model Independent Results from DAMA/LIBRA-Phase2. Universe 4 (2018) 116. https://doi.org/10.3390/universe4110116
20. R. Bernabei et al. First model independent results from DAMA/LIBRA-phase2. Nucl. Phys. At. Energy 19 (2018) 307. https://doi.org/10.15407/jnpae2018.04.307
21. R. Bernabei. New Model Independent Results from the First Six Full Annual Cycles of DAMA/LIBRA-phase2. Bled Workshops in Physics 19(2) (2018) 27. http://bsm.fmf.uni-lj.si/bled2018bsm/talks/BledVol19No2proc.pdf
22. R. Bernabei et al. Improved model-dependent corollary analyses after the first six annual cycles of DAMA/LIBRA-phase2. Nucl. Phys. At. Energy 20(4) (2019) 317. https://doi.org/10.15407/jnpae2019.04.317
23. R. Bernabei et al. The DAMA project: Achievements, implications and perspectives. Prog. Part. Nucl. Phys. 114 (2020) 103810. https://doi.org/10.1016/j.ppnp.2020.103810
24. R. Bernabei et al. The dark matter: DAMA/LIBRA and its perspectives. arXiv:2110.04734 [hep-ph]. https://doi.org/10.48550/arXiv.2110.04734
25. R. Bernabei et al. New limits on WIMP search with large-mass low-radioactivity NaI(Tl) set-up at Gran Sasso. Phys. Lett. B 389 (1996) 757. https://doi.org/10.1016/S0370-2693(96)80020-7
26. R. Bernabei et al. Searching for WIMPs by the annual modulation signature. Phys. Lett. B 424 (1998) 195. https://doi.org/10.1016/S0370-2693(98)00172-5
27. R. Bernabei et al. On a further search for a yearly modulation of the rate in particle Dark Matter direct search. Phys. Lett. B 450 (1999) 448. https://doi.org/10.1016/S0370-2693(99)00091-X
28. P. Belli et al. Extending the DAMA annual modulation region by inclusion of the uncertainties in astrophysical velocities. Phys. Rev. D 61 (2000) 023512. https://doi.org/10.1103/PhysRevD.61.023512
29. R. Bernabei et al. Search for WIMP annual modulation signature: results from DAMA/NaI-3 and DAMA/NaI-4 and the global combined analysis. Phys. Lett. B 480 (2000) 23. https://doi.org/10.1016/S0370-2693(00)00405-6
30. R. Bernabei et al. Investigating the DAMA annual modulation data in a mixed coupling framework. Phys. Lett. B 509 (2001) 197. https://doi.org/10.1016/S0370-2693(01)00493-2
31. R. Bernabei et al. Investigating the DAMA annual modulation data in the framework of inelastic dark matter. Eur. Phys. J. C 23 (2002) 61. https://doi.org/10.1007/s100520100854
32. P. Belli et al. Effect of the galactic halo modeling on the DAMA-NaI annual modulation result: An extended analysis of the data for weakly interacting massive particles with a purely spin-independent coupling. Phys. Rev. D 66 (2002) 043503. https://doi.org/10.1103/PhysRevD.66.043503
33. R. Bernabei et al. Performances of the ≃ 100 kg NaI(Tl) set-up of the DAMA experiment at Gran Sasso. Il Nuovo Cim. A 112 (1999) 545. https://doi.org/10.1007/BF03035868
34. R. Bernabei et al. On the investigation of possible systematics in WIMP annual modulation search. Eur. Phys. J. C 18 (2000) 283. https://doi.org/10.1007/s100520000540
35. R. Bernabei et al. Dark matter search. La Rivista del Nuovo Cimento 26(1) (2003) 1 and Refs. therein. https://www.sif.it/riviste/sif/ncr/econtents/2003/026/01
36. R. Bernabei et al. Dark matter particles in the galactic halo: Results and implications from DAMA/NaI. Int. J. Mod. Phys. D 13 (2004) 2127 and Refs. therein. https://doi.org/10.1142/S0218271804006619
37. R. Bernabei et al. Investigating pseudoscalar and scalar dark matter. Int. J. Mod. Phys. A 21 (2006) 1445. https://doi.org/10.1142/S0217751X06030874
38. R. Bernabei et al. Investigating halo substructures with annual modulation signature. Eur. Phys. J. C 47 (2006) 263. https://doi.org/10.1140/epjc/s2006-02559-9
39. R. Bernabei et al. On electromagnetic contributions in WIMP quests. Int. J. Mod. Phys. A 22 (2007) 3155. https://doi.org/10.1142/S0217751X07037093
40. R. Bernabei et al. Possible implications of the channeling effect in NaI(Tl) crystals. Eur. Phys. J. C 53 (2008) 205. https://doi.org/10.1140/epjc/s10052-007-0479-0
41. R. Bernabei et al. Investigating electron interacting dark matter. Phys. Rev. D 77 (2008) 023506. https://doi.org/10.1103/PhysRevD.77.023506
42. R. Bernabei et al. Investigation on light dark matter. Mod. Phys. Lett. A 23 (2008) 2125. https://doi.org/10.1142/S0217732308027473
43. R. Bernabei et al. Search for non-paulian transitions in 23Na and 127I. Phys. Lett. B 408 (1997) 439. https://doi.org/10.1016/S0370-2693(97)00842-3
44. P. Belli et al. New experimental limit on the electron stability and non-paulian transitions in Iodine atoms. Phys. Lett. B 460 (1999) 236. https://doi.org/10.1016/S0370-2693(99)00783-2
45. R. Bernabei et al. Extended limits on neutral strongly interacting massive particles and nuclearites from NaI(Tl) scintillators. Phys. Rev. Lett. 83 (1999) 4918. https://doi.org/10.1103/PhysRevLett.83.4918
46. P. Belli et al. New limits on the nuclear levels excitation of 127I and 23Na during charge nonconservation. Phys. Rev. C 60 (1999) 065501. https://doi.org/10.1103/PhysRevC.60.065501
47. R. Bernabei et al. Investigation on possible diurnal effects induced by dark matter particles. Il Nuovo Cimento A 112 (1999) 1541. https://scholar.google.com/scholar_lookup?author=R.+Bernabei&journal=Il+Nuovo+Cimento+A&volume=112&pages=1541&publication_year=1999
48. R. Bernabei et al. Search for solar axions by Primakoff effect in NaI crystals. Phys. Lett. B 515 (2001) 6. https://doi.org/10.1016/S0370-2693(01)00840-1
49. F. Cappella et al. A preliminary search for Q-balls by delayed coincidences in NaI(Tl). Eur. Phys. J.-direct C 14 (2002) 1. https://doi.org/10.1007/s1010502c0014
50. R. Bernabei et al. Search for spontaneous transition of nuclei to a superdense state. Eur. Phys. J. A 23 (2005) 7. https://doi.org/10.1140/epja/i2004-10072-2
51. R. Bernabei et al. A search for spontaneous emission of heavy clusters in the 127I nuclide. Eur. Phys. J. A 24 (2005) 51. https://doi.org/10.1140/epja/i2004-10122-9
52. R. Bernabei, A. Incicchitti. Low background techniques in NaI(Tl) setups. Int. J. Mod. Phys. A 32 (2017) 1743007. https://doi.org/10.1142/S0217751X17430072
53. K.A. Drukier et al. Detecting cold dark-matter candidates. Phys. Rev. D 33 (1986) 3495. https://doi.org/10.1103/PhysRevD.33.3495
54. K. Freese et al. Signal modulation in cold-dark-matter detection. Phys. Rev. D 37 (1988) 3388. https://doi.org/10.1103/PhysRevD.37.3388
55. D. Smith, N. Weiner. Inelastic dark matter. Phys. Rev. D 64 (2001) 043502. https://doi.org/10.1103/PhysRevD.64.043502
56. D. Tucker-Smith, N. Weiner. Status of inelastic dark matter. Phys. Rev. D 72 (2005) 063509. https://doi.org/10.1103/PhysRevD.72.063509
57. D.P. Finkbeiner et al. Inelastic dark matter and DAMA/LIBRA: An experimentum crucis. Phys. Rev. D 80 (2009) 115008. https://doi.org/10.1103/PhysRevD.80.115008
58. K. Freese et al. Detectability of weakly interacting massive particles in the Sagittarius dwarf tidal stream. Phys. Rev. D 71 (2005) 043516. https://doi.org/10.1103/PhysRevD.71.043516
59. K. Freese et al. Effects of the Sagittarius dwarf tidal stream on dark matter detectors. Phys. Rev. Lett. 92 (2004) 111301. https://doi.org/10.1103/PhysRevLett.92.111301
60. P. Belli et al. The electronics and DAQ system in DAMA/LIBRA. Int. J. of Mod. Phys. A 31 (2016) 1642005. https://doi.org/10.1142/S0217751X16420057
61. P. Gondolo et al. DarkSUSY 4.00 neutralino dark matter made easy. New Astron. Rev. 49 (2005) 193. https://doi.org/10.1016/j.newar.2005.01.009
62. G. Gelmini, P. Gondolo. Weakly interacting massive particle annual modulation with opposite phase in late-infall halo models. Phys. Rev. D 64 (2001) 023504. https://doi.org/10.1103/PhysRevD.64.023504
63. F.S. Ling, P. Sikivie, S. Wick. Diurnal and annual modulation of cold dark matter signals. Phys. Rev. D 70 (2004) 123503. https://doi.org/10.1103/PhysRevD.70.123503
64. G. Ranucci, M. Rovere. Periodogram and likelihood periodicity search in the SNO solar neutrino data. Phys. Rev. D 75 (2007) 013010. https://doi.org/10.1103/PhysRevD.75.013010
65. J.D. Scargle. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263 (1982) 835. https://doi.org/10.1086/160554
66. W.H. Press et al. Numerical recipes in Fortran 77: The Art of Scientific Computing (Cambridge, England, Cambridge University Press, 1992) Section 13.8. http://www.cambridge.org/9780521430647
67. J.H. Horne, S.L. Baliunas. A Prescription for Period Analysis of Unevenly Sampled Time Series. Astrophys. J. 302 (1986) 757. https://doi.org/10.1086/164037
68. W.T. Eadie et al. Statistical Methods in Experimental Physics (American Elsevier Pub., 1971). Google books