ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Forecasting of 137Cs and 90Sr radionuclides intake into agricultural crops
Yu. V. Khomutinin*, M. A. Zhurba, S. E. Levchuk, O. V. Kosarchuk, S. V. Polishchuk, V. V. Pavliuchenko
Ukrainian Institute of Agricultural Radiology of the National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
*Corresponding author. E-mail address:
khomutinin@gmail.com
Abstract: Maps of the 137Cs contamination of abandoned agricultural land in Narodychi district (Zhytomyr region) were built using data of the radiological survey. Statistical characteristics of the soil contamination with 137Cs, 90Sr, and plutonium isotopes (median, geometric standard deviation, upper limit for Ð = 0.9) were estimated. Contamination of the local crops with 137Cs and 90Sr as well as the risk of exceeding permissible levels were estimated. Recommendations for the return of these lands for commercial use are provided.
Keywords: contamination of land with 137Cs and 90Sr, mapping, forecasting of 137Cs and 90Sr uptake.
References:1. Law of Ukraine “On the Legal Regime of the Territory Suffered from Radioactive Contamination as a Result of the Chornobyl Accident” of February 27, 1991, No. 791a-XII. Vidomosti Verkhovnoyi Rady URSR 16 (1991) Art. 198. (Ukr) https://zakon.rada.gov.ua/laws/show/791%D0%B0-12
2. State hygienic standards. Permissible levels of 137Cs and 90Sr radionuclides in food and drinking water. Hygienic standard. ÃÍ 6.6.1.1-130-2006. Ofitsiynyy visnyk Ukrayiny 29 (2006) 142. (Ukr) https://zakon.rada.gov.ua/laws/show/z0845-06#Text
3. Yu.V. Khomutinin, V.A. Kashparov, E.I. Zhebrovskaya. Optimization of Sampling and Measurements of Samples during Radioecological Monitoring (Kyiv: VIPOL, 2001) 160 p. (Rus) https://www.researchgate.net/publication/291333135_Optimizacia_otbora_i_izmerenij_prob_pri_radioekologiceskom_monitoringe_Monografia
4. Yu.V. Khomutinin. Optimization of sampling for assessment of contamination density by local territory radionuclides. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 1(9) (2003) 145. (Rus) https://jnpae.kinr.kyiv.ua/04.1/Articles_PDF/jnpae-2003-04-1-145.pdf
5. Yu.V. Khomutinin, S.E. Levchuk, V.V. Pavlyuchenko. Optimization of soil sampling in the mapping of radioactive fallout density. Visnyk Zhytomyrskoho Universytetu 3 (1) (55) (2016) 74. (Ukr)
6. Yu.V. Khomutinin. Statistical characteristics of radionuclides soil-to-plant transfer factors and minimal necessary amount of the coupled samples for their reliable estimation. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 3(11) (2003) 95. (Rus) https://jnpae.kinr.kyiv.ua/04.3/Articles_PDF/jnpae-2003-04-3-095.pdf
7. Yu.V. Khomutinin et al. 129I content forecasting in the meadow motley grass of Korosten and Narodichi districts pastures. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 18(4) (2017) 361. (Rus) https://doi.org/10.15407/jnpae2017.04.361
8. Yu.V. Khomutinin et al. Mapping of radioactive contamination of the territory with spotted structure. Problemy Chornobylskoyi zony vidchuzhennya (Problems of Chernobyl Exclusion Zone) 19 (2018) 58. (Rus) http://www.chornobyl.net/%d0%b7%d0%b1%d1%96%d1%80%d0%bd%d0%b8%d0%ba-19/
9. Yu.V. Khomutinin et al. Mapping of radionuclide-contaminated agricultural land to make them available for use. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 20(3) (2019) 285 (Ukr) https://doi.org/10.15407/jnpae2019.03.285
10. Yu.V. Khomutinin et al. Mapping of radioactive contamination with predetermined confidence level. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 21(3) (2020) 265. (Ukr) https://doi.org/10.15407/jnpae2020.03.265
11. Yu.V. Khomutinin, S.E. Levchuk, V.V. Pavlyuchenko. Operative assessment of radioactive contamination of agricultural land for their return to use. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 22(1) (2021) 74. (Ukr) https://doi.org/10.15407/jnpae2021.01.074
12. V.A. Kashparov et al. Soil contamination with 90Sr in the near zone of the Chernobyl accident. Journal of Environment Radioactivity 56(3) (2001) 285. https://doi.org/10.1016/S0265-931X(00)00207-1
13. V.A. Kashparov et al. Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Science of the Total Environment 317(1-3) (2003) 105. https://doi.org/10.1016/S0048-9697(03)00336-X
14. T. Hengl, G. Heuvelink, D. Rossiter. About regression-kriging: From equations to case studies. Computers & Geosciences 33 (2007) 1301. https://doi.org/10.1016/j.cageo.2007.05.001
15. U. Barnekow et al. Guidelines on Soil and Vegetation Sampling for Radiological Monitoring. IAEA, Technical Reports Series 486 (2019) 266 p. https://www-pub.iaea.org/MTCD/Publications/PDF/DOC_010_486_web.pdf
16. Public cadastral map of Ukraine. (Ukr) https://map.land.gov.ua
17. EOS Crop Monitoring. https://cropmap.eos.com/
18. Recommendations on establishing of regulatory limits on the radioactive contamination of foodstuffs, agricultural and forestry products (Vienna, 2015) 136 ð. http://chernobyl.info/Portals/0/Docs/ru/pdf_ru/IAEA_document_on_food_products_2016.pdf
19. State Standard of Ukraine 4674: 2006 Hay. Technical conditions (Kyiv: Derzhspozhyvstandart of Ukraine, 2008) 20 p. (Ukr)
20. O.V. Lopatyuk. Assessment of ecological and socio-economic living conditions of the rural population of Polissya of Ukraine in the remote period after the Chernobyl accident. Thesis of Candidate of agricultural Sciences (Zhytomyr, 2020) 226 p. (Ukr) http://znau.edu.ua/images/public_document/2020/%D0%94%D0%B8%D1%81%D0%B5%D1%80%D1%82%D0%B0%D1%86%D1%96%D1%8F_%D0%9B%D0%BE%D0%BF%D0%B0%D1%82%D1%8E%D0%BA_%D0%9E.%20%D0%92..pdf
21. M.I. Didukh, V.P. Slavov. Features of radioactive contamination of agro-ecosystems of Polissya of Ukraine in the remote period after the Chernobyl accident. Ahroekolohichnyy Zhurnal 1 (2016) 51. (Ukr) http://www.iogu.gov.ua/wp-content/uploads/2016/12/%D0%B6%D1%83%D1%80%D0%BD%D0%B0%D0%BB-1_2016.pdf
22. N.N. Tsybulko. Time dynamics of 137Cs and 90Sr migration parameters in the soil-plant system: a comparative analysis. Pochvovedeniye i Agrokhimiya 2(55) (2015) 92. (Rus) http://aw.belal.by/russian/science/soilandagro_pdf/55/55-full.pdf
23. N.O. Kymakovska. Radioecological substantiation of permissible levels of 137Cs soil contamination for subsistence farming in radioactively contaminated areas in the remote period. Thesis of Candidate of agricultural Sciences (Zhytomyr, 2015) 158 p. (Ukr) http://ir.znau.edu.ua/bitstream/123456789/2885/1/Kymakovska_N_O_2015.pdf
24. Yu.V. Putyatin, T.M. Seraya, A.I. Sokolik. Influence of potassium nutrition and acidity of soddy-podzolic sandy loamy soil on the yield and accumulation of 137Cs and 90Sr in spring rapeseed and potatoes. Viesci Nacyjanalnaj Akademii Navuk Bielarusi. Sieryja Ahrarnych Navuk 3 (2006) 47. (Rus) http://vesti.belal.by/vesti/pdf/20060308.pdf
25. Yu.V. Putyatin, T.M. Seraya, I.A. Dobrovolskaya. Influence of potash fertilizers and acidity of sod-podzolic sandy loamy soil on the yield and accumulation of 137Cs and 90Sr in grain crops. Agrokhimiya 7 (2005) 59. (Rus)
26. Recommendations for agricultural production in the conditions of radioactive contamination of the lands of the Republic of Belarus for 2012 - 2016 (Minsk, 2012) 124 p. (Rus) https://chernobyl.mchs.gov.by/upload/iblock/a79/rec_sel_hoz_2012.pdf
27. O.M. Tavrykina, V.A. Dovnar. Removal of 137Cs and 90Sr radionuclides from soddy-podzolic sandy loamy soil by various varieties of oats. Pochvovedeniye i Agrokhimiya 2(47) (2011) 130. (Rus) http://aw.belal.by/russian/science/soilandagro_pdf/47/47-15.pdf
28. E.M. Bartyshaev, I.M. Bogdevich. Yield and accumulation of 137Cs and 90Sr in grains of different varieties of millet on soddy-podzolic sandy loamy soil. Pochvovedeniye i Agrokhimiya 1(46) (2011) 168. (Rus) http://aw.belal.by/russian/science/soilandagro_pdf/46/46-17.pdf
29. I.M. Bogdevich et al. Recommendations for the cultivation of millet for food purposes on soddy-podzolic sandy loamy soils under conditions of radioactive contamination (Minsk: Institute of Soil Science and Agrochemistry, 2011) 33 p. (Rus) https://elib.baa.by/jspui/bitstream/123456789/1723/1/%d0%91%d1%82%d1%88%2032.pdf
30. O.M. Tavrykina, I.M. Bogdevich, Yu.V. Putyatin. Removal of 90Sr radionuclide by varieties of winter and spring wheat cultivated on soddy-podzolic sandy loam soil contaminated with radionuclides. Pochvovedeniye i Agrokhimiya 1(46) (2011) 115. (Rus) http://aw.belal.by/russian/science/soilandagro_pdf/46/46-12.pdf
31. E.M. Batyrshaev. Influence of types and doses of nitrogen fertilizers on the yield and accumulation of 137Cs and 90Sr in millet grain. In: Soil Fertility and Efficient use of Fertilizers. Materials of the Int. Sci-Pract. Conf. Minsk, July 5 - 8, 2011 (Minsk: Institute of Soil Science and Agrochemistry, 2011) p. 194. (Rus)
32. G.V. Sedukova, S.A. Isachenko. Parameters of accumulation and limiting densities of soil contamination with radionuclides to produce normatively clean products of winter rapeseed in the territory of radioactive contamination. Zemledeliye i Selektsiya v Belarusi 54 (2018) 180. (Rus) https://izis.by/wp-content/uploads/IzdSbornik/Sbornik54.pdf
33. G.V. Sedukova, S.A. Isachenko. Influence of agrochemical parameters on the transition parameters and limiting densities of soil contamination with radionuclides to produce normatively pure winter rapeseed products. Zemledeliye i Selektsiya v Belarusi 55 (2019) 151. (Rus) https://izis.by/wp-content/uploads/IzdSbornik/Sbornik55.pdf
34. I. Labunska et al. Current radiological situation in areas of Ukraine contaminated by the Chornobyl accident. Part 2. Strontium-90 transfer to culinary grains and forest woods from soils of Ivankiv district. Environment International 146 (2021) 106282. https://doi.org/10.1016/j.envint.2020.106282