Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2021, volume 22, issue 2, pages 182-188.
Section: Radiobiology and Radioecology.
Received: 28.07.2020; Accepted: 17.11.2020; Published online: 10.09.2021.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2021.02.182

Pre-sowing seeds stimulation by UV-C and X-ray irradiation on the content of antioxidants in inflorescence plants genotypes Matricia chammomila L.

V. V. Zhuk1, O. P. Kravets1,*, D. O. Sokolova1, V. I. Sakada1, L. A. Glushchenko2, M. V. Kuchuk1

1 Institute of Cell Biology and Genetic Engineering, NAS of Ukraine, Kyiv, Ukraine
2 Research Station of Medicinal Plants, Institute of Agroecology and Nature Management, NAAS of Ukraine, Lubny, Ukraine


*Corresponding author. E-mail address: kaplibra@gmail.com

Abstract: The differences in the dynamics of the flavonoids and phenols content in plants of eight genotypes of matricaria in the control and at presowing UV-C and X-ray irradiation of seeds were studied. Groups of genotypes by the stimulating effect on the content of antioxidants were determined mainly by UV-C irradiation, as well as groups with a significant increase in the content of antioxidants during X-ray irradiation have been identified. A high significant correlation (R = 0.84) between stimulation of flavonoid synthesis by X-ray irradiation and the level of these antioxidants in the control group is shown. Above average (R = 0.64), but insignificant, the correlation is observed between the level of flavonoids in UV-C stimulation and the level of these antioxidants in the control group. No correlation was found between the content of phenols in the control group and the increase of this indicator after irradiation.

Keywords: antioxidants, non-targets effects, pharmacology, UV-C, X-ray irradiation.

References:

1. V.L. Kretovich. Biochemistry of Plants (Moskva: Vysshaya shkola, 1986) 497 p. (Rus)

2. Yu.B. Kudryashov. Basic principles in radiobiology. Radiatsionnaya Biologiya. Radioekologiya 41(5) (2001) 531. (Rus)

3. K.D. Croft. The chemistry and biological effects of flavonoids and phenolic acids. Annals of the New York Academy of Sciences 854(1) (1998) 435. https://doi.org/10.1111/j.1749-6632.1998.tb09922.x

4. B. Winkel-Shirley. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant. Biol. 5 (2002) 218. https://doi.org/10.1016/S1369-5266(02)00256-X

5. D. Treutter. Significance of flavonoids in plant resistance: a review. Environ. Chem. Lett. 4(3) (2006) 147. https://doi.org/10.1007/s10311-006-0068-8

6. R. Mittler. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 (2002) 405. https://doi.org/10.1016/S1360-1385(02)02312-9

7. K.F. Khattak, T.J. Simpson. Effect of gamma irradiation on the extraction yield, total phenolic content and free radical-scavenging activity of Nigella staiva seed. Food Chemistry 110(4) (2008) 967. https://doi.org/10.1016/j.foodchem.2008.03.003

8. M. Alothman, R. Bhat, A.A. Karim. Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends in Food Science & Technology 20(5) (2009) 201. https://doi.org/10.1016/j.tifs.2009.02.003

9. K. Harrison, L.M. Were. Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of almond skin extracts. Food Chemistry 102(3) (2007) 932. https://doi.org/10.1016/j.foodchem.2006.06.034

10. J. Dai, R.J. Mumper. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10) (2010) 7313. https://doi.org/10.3390/molecules15107313

11. S.S. Moghaddam et al. Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centella Asiatica. Molecules 16(6) (2011) 4994. https://doi.org/10.3390/molecules16064994

12. S. Kaur, P. Mondal. Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial properties of medicinal plants. J. Microbiol. Exp. 1(1) (2014) 1. https://doi.org/10.15406/jmen.2014.01.00005

13. M. Sengul et al. Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pak. J. Pharm Sci. 22(1) (2009) 102. https://www.pjps.pk/wp-content/uploads/pdfs/CD-PJPS-22-1-09/Paper-19.pdf

14. A.M. Kuzin. Structural and Metabolic Hypothesis in Radiobiology (Moskva: Nauka, 1970) 221 p. (Rus)

15. D.B. Littl. Non-targeting effects of ionizing radiation: conclusions in relation to low-dose exposures. Radiatsionnaya Biologiya. Radioekologiya 47(3) (2007) 262. (Rus)

16. A.P. Kravets, G.S. Wengzhen, D.M. Grodzinsky. Remote interaction of irradiated and non-irradiated plants. Radiatsionnaya Biologiya. Radioekologiya 49(4) (2009) 490. (Rus)

17. K.S. Gould. C. Lister. Flavonoid functions in plants. In: Flavonoids. Chemistry, Biochemistry and Applications. O.M. Andersen, K.R. Markham (Eds.) (Boca Raton, 2006) p. 397. https://doi.org/10.1201/9781420039443

18. D.А. Sokolova et al. Productivity of medicinal raw materials by different genotypes of Matricia chammomila L. is affected with pre-sowing radiation exposure of seeds. International Journal of Secondary Metabolite 8(2) (2021) 127. https://doi.org/10.21448/ijsm.889817

19. Спосіб підвищення вмісту флавоноїдів в сировині лікарських рослин шляхом радіаційної передпосівної обробки насіння. Зареєстровано в Державному реєстрі патентів України на корисні моделі 12.11.2018, № 129749, МПК A01C 1/00. https://base.uipv.org/searchINV/search.php?action=search