ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Radionuclides contamination of leaves of woody plants growing within the CHNPP cooling pond
V. K. Shynkarenko*, S. A. Paskevych, Y. A. Menshenin, O. O. Odintsov
Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, Kyiv, Ukraine
*Corresponding author. E-mail address:
shynkarenko.viktor@gmail.com
Abstract: The data on the state of radioactive contamination of leaves of plants growing directly on the territory of the drained part of the cooling pond of the Chernobyl NPP are presented. It was shown that the main source of contamination is the root intake of radionuclides (137Cs and 90Sr). This contamination is larger in previously drained areas compared to recently exposed ones. Hot particles were found on the leaf surface by autoradiography. Their total β-activity is a few percent of the total pollution. Possible sources of hot particles – resuspension in the air in the region of the northern part of the cooling pond are discussed.
Keywords: drainage of the cooling pond, hot particles, autoradiography, accumulation of 137Cs and 90Sr by vegetation, wind resuspension.
References:1. R. Pöllänen. Nuclear fuel particles in the environment – characteristics, atmospheric transport and skin doses. Academic Dissertation (Helsinki, Radiation and Nuclear Safety Authority University of Helsinki, Department of Physics, 2002) 64 ð. https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/043/33043484.pdf
2. L.S. Pirnach. Radioactive pollution of the Chernobyl cooling pond bottom sediments. ². Water-physical properties, chemical compound and radioactive pollution of pore water. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 12(1) (2011) 86. (Rus) https://jnpae.kinr.kyiv.ua/12.1/Articles_PDF/jnpae-2011-12-0086-Pirnach.pdf
3. L.S. Pirnach. Radioactive pollution of the Chernobyl cooling pond bottom sediments. II. Distribution of 137Cs, 241Am, 90Sr in a solid phase. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 12(4) (2011) 385. (Rus) https://jnpae.kinr.kyiv.ua/12.4/Articles_PDF/jnpae-2011-12-0385-Pirnach.pdf
4. V.V. Kanivets, O.V. Voitsekhovitch. Radioactive contamination of bottom sediments of the reservoir-cooler of the Chernobyl Nuclear Power Plant. Scientific works of the Ukrainian Hydrometeorological Institute 248 (2000) 154. (Rus)
5. V.V. Kanivets et al. 137Cs and 90Sr in the water of the ChNPP cooling pond. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 15(4) (2014) 370. (Ukr) https://jnpae.kinr.kyiv.ua/15.4/Articles_PDF/jnpae-2014-15-0370-Kanivets.pdf
6. A. Bulgakov, A. Konoplev, J. Smith. Fuel particles in the Chernobyl cooling pond: current state and prediction for remediation options. Journal of Environmental Radioactivity. 100 (2009) 329. https://doi.org/10.1016/j.jenvrad.2008.12.012
7. V.O. Kashparov, Yu.V. Khomutinin, Î.S. Glukhovsky. Assessment of the danger of secondary wind transfer of radioactive aerosols after partial drainage of the Chernobyl cooling reservoir. Byuleten Ekolohichnoho Stanu Zony Vidchuzhennya ta Zony Bezumovnoho (Obovyazkovoho) Vidselennya 1(21) (2003) 67. (Ukr)
8. V.P. Protsak et al. Predictive assessment of dynamic of the physical-chemical forms of radionuclides in the bottom sediment of the ChNPP cooling pond after its draining. Problemy Chornobylskoyi Zony Vidchuzhennya (Problems of the Chornobyl Exclusion Zone) 18 (2018) 92. (Ukr) http://www.chornobyl.net/en/archive/
9. V.P. Protsak et al. Dynamics of physico-chemical forms of radionuclides in the bottom sediments of cooling pond of the CHNPP after their drying: 1. model experiment. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 18(4) ( 2017) 341. (Ukr) https://doi.org/10.15407/jnpae2017.04.341
10. R.M. Alexakhin, M.A. Naryshkin. Migration of Radionuclides in Forest Biogeocenoses (Moskva: Nauka, 1977) 144 p. (Rus)
11. A.I. Shcheglov et al. Biogeochemistry of Chernobyl-derived radionuclides in the forest ecosystems of the European part of the CIS. Radiatsionnaya Biologiya. Radioekologiya (Radiation Biology. Radioecology) 36(4) (1996) 437. (Rus) https://istina.ips.ac.ru/publications/article/2900154/
12. G.A. Boyd. Autoradiography in Biology and Medicine. 1-st ed. (New York: Academic Press, 1955) 414 p. https://www.elsevier.com/books/autoradiography-in-biology-and-medicine/boyd/978-1-4832-3134-1
13. V.K. Shynkarenko. To definition of activity of hot particles by a radiographic method. Problemy Bezpeky Atomnyh Elektrostantsiy i Chornobylya (Problems of Nuclear Power Plants Safety and of Chornobyl) 9 (2008) 130. (Rus) http://www.ispnpp.kiev.ua/wp-content/uploads/2017/2008_09/c130.pdf
14. V.K. Shynkarenko. To problems of hot particles β activity determination errors by the autoradiography method. Problemy Bezpeky Atomnyh Elektrostantsiy i Chornobylya (Problems of Nuclear Power Plants Safety and of Chornobyl). 30 (2018) 109. (Rus) https://doi.org/10.31717/1813-3584.18.30.13
15. V.A. Ageyev, O.O. Odintsov, A.D. Sajeniouk. Routine radiochemical method for the determination of 90Sr, 238Pu, 239+240Pu, 241Am and 244Cm in environmental samples. J. Radioanal. Nucl. Chem. 264(2) (2005) 337. https://doi.org/10.1007/s10967-005-0718-5
16. S.N. Begichev et al. Reactor fuel of the 4th unit of the ChNPP. Preprint of IAE AS USSR 5208/3 (Moskva, 1990) (1990) 23 p. (Rus)
17. V.K. Shynkarenko et al. Radioactive Aerosols in the Near Zone of the Chornobyl Nuclear Power Plant in 2018. Yaderna Enerhetyka ta Dovkillya (Nuclear Power and the Environment) 1(16) (2020) 57. (Ukr) https://doi.org/10.31717/2311-8253.20.1.7
18. A. Kabata-Pendias, H. Pendias. Trace Elements in Soil and Plants. 3-rd ed. (Boca Raton, Florida. 1984) 315 p. Google books