ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Neutron investigation of interaction between anionic surfactant micelles and poly (ethylene glycol) polymer brush system
O. P. Artykulnyi1,2,*, M. M. Avdeev2, Ye. M. Kosiachkin1,2,3, V. I. Petrenko4,5, I. Safarik6, L. A. Bulavin1
1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2 Joint Institute for Nuclear Research, Dubna, Russia
3 Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
4 BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
5 Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
6 Department of Nanobiotechnology, Biology Centre, ISB, CAS, Ceske Budejovice, Czech Republic
*Corresponding author. E-mail address:
artykulnyi@gmail.com
Abstract: A polymer brush system of a neutral polymer poly (ethylene glycol) with a molecular weight of Mw = 20 kDa on silicon substrates in an aqueous medium was studied by the specular neutron reflectometry. Structural changes in the density profile of a polymer brush caused by the interaction of polymer chains with micelles of the anionic surfactant dodecylbenzenesulfonate acid were observed. The effect is shown to be related to the formation of molecular polymer-micelle associates in the bulk of the solution, which was previously studied by small-angle neutron scattering in a wide range of surfactant concentrations at various molecular weights of the polymer. The density of the dry polymer layer on the silicon substrate was additionally characterized by X-ray reflectometry and scanning atomic force microscopy.
Keywords: micelles, anionic surfactants, poly (ethylene glycol), neutron reflectometry, polymer brush, small-angle neutron scattering.
References:1. S.T. Milner. Polymer brushes. Science 251 (1991) 905. https://doi.org/10.1126/science.251.4996.905
2. B. Zdyrko, I. Luzinov. Polymer brushes by the "grafting to" method. Macromol. Rapid Commun. 32 (2011) 859. https://doi.org/10.1002/marc.201100162
3. W.J. Brittain, S. Minko. A structural definition of polymer brushes. J. Polym. Sci. Part A Polym. Chem. 45 (2007) 3505. https://doi.org/10.1002/pola.22180
4. Y.J. Nikas, D. Blankschtein. Complexation of Nonionic Polymers and Surfactants in Dilute Aqueous Solutions. Langmuir 10 (1994) 3512. https://doi.org/10.1021/la00022a026
5. K.C. Tam, E. Wyn-Jones. Insights on polymer surfactant complex structures during the binding of surfactants to polymers as measured by equilibrium and structural techniques. Chem. Soc. Rev. 35 (2006) 693. https://doi.org/10.1039/b415140m
6. L.T. Lee. Polymer-surfactant interactions: Neutron scattering and reflectivity. Curr. Opin. Colloid Interface Sci. 4 (1999) 205. https://doi.org/10.1016/S1359-0294(99)00032-1
7. O.P. Artykulnyi et al. Impact of poly (ethylene glycol) on the structure and interaction parameters of aqueous micellar solutions of anionic surfactants. J. Mol. Liq. 276 (2019) 806. https://doi.org/10.1016/j.molliq.2018.12.035
8. O.P. Artykulnyi et al. On the impact of polyethylene glycol on the structure of aqueous micellar solutions of sodium oleate according to small-angle neutron scattering. J. Surf. Investig. 12 (2018) 1142. https://doi.org/10.1134/S1027451018050543
9. J. Philip et al. Three Distinct Scenarios under Polymer, Surfactant, and Colloidal Interaction. Macromolecules 36 (2003) 9230. https://doi.org/10.1021/ma0342628
10. B. Cattoz et al. Manipulating interfacial polymer structures through mixed surfactant adsorption and complexation. Langmuir 28 (2012) 6282. https://doi.org/10.1021/la300282m
11. E. Tombacz et al. Surfactant double layer stabilized magnetic nanofluids for biomedical application. J. Phys. Condens. Matter. 20 (2008) 204103. https://doi.org/10.1088/0953-8984/20/20/204103
12. V. Zavisova et al. Magnetic fluid poly (ethylene glycol) with moderate anticancer activity. J. Magn. Magn. Mat. 323 (2011) 1408. https://doi.org/10.1016/j.jmmm.2010.11.060
13. W.M. de Vos et al. Adsorption of anionic surfactants in a nonionic polymer brush experiments, comparison with mean-field theory, and implications for brush-particle interaction. Langmuir 25 (2009) 9252. https://doi.org/10.1021/la900791b
14. H. Wang et al. Molecular dynamics study of the adsorption of anionic surfactant in a nonionic polymer brush. J. Mol. Model. 20 (2014) 1. https://doi.org/10.1007/s00894-014-2267-8
15. E.P.K. Currie et al. Grafted polymers with annealed excluded volume: A model for surfactant association in brushes. Eur. Phys. J. E 1 (2000) 27. https://doi.org/10.1007/s101890050004
16. M. Moglianetti et al. A neutron reflectivity study of surfactant self-assembly in weak polyelectrolyte brushes at the sapphire-water interface. Langmuir 27 (2011) 4489. https://doi.org/10.1021/la200211x
17. O.P. Artykulnyi et al. Structural investigations of poly(ethylene glycol)-dodecylbenzenesulfonic acid complexes in aqueous solutions. J. Mol. Liq. 308 (2020) 113045. https://doi.org/10.1016/j.molliq.2020.113045
18. V.I. Petrenko et al. On Enhancement of the Adsorption-Layer Effect at the Metallic Electrode-Liquid Electrolyte Interface in Specular Neutron Reflectometry Experiments. J. Surf. Investig. 12 (2018) 651. https://doi.org/10.1134/S1027451018040158
19. S.D. Chandradoss et al. Surface passivation for single-molecule protein studies. J. Vis. Exp. 86 (2014) 50549. https://doi.org/10.3791/50549
20. Y. Han et al. Surface activation of thin silicon oxides by wet cleaning and silanization. Thin Solid Films 510 (2006) 175. https://doi.org/10.1016/j.tsf.2005.11.048
21. M.V. Avdeev et al. Neutron time-of-flight reflectometer GRAINS with horizontal sample plane at the IBR-2 reactor: Possibilities and prospects. Crystallogr. Reports 62 (2017) 1002. https://doi.org/10.1134/S1063774517060025
22. V. Ananiev et al. The world’s first pelletized cold neutron moderator at a neutron scattering facility. Nucl. Instruments Methods B 320 (2014) 70. https://doi.org/10.1016/j.nimb.2013.12.006
23. I.V. Gapon et al. Structure analysis of aqueous ferrofluids at interface with silicon: Neutron reflectometry data. J. Phys: Conf. Ser. 848 (2017) 012015. https://doi.org/10.1088/1742-6596/848/1/012015
24. A. Nelson. Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT. J. Appl. Crystallogr. 39 (2006) 273. https://doi.org/10.1107/S0021889806005073
25. K.L. Linegar et al. Hydrodynamic radius of polyethylene glycol in solution obtained by dynamic light scattering. Colloid J. 72 (2010) 279. https://doi.org/10.1134/S1061933X10020195
26. J.S. Pedersen. Analysis of small-angle scattering data from colloids and polymer solutions: Modeling and least-squares fitting. Adv. Colloid Interface Sci. 70 (1997) 172. https://doi.org/10.1016/S0001-8686(97)00312-6
27. L.A. Bulavin et al. Measurements of structural and electrostatic parameters and surface tension of micelles of an ionic surfactant versus concentration, ionic strength of solution and temperature by small-angle neutron scattering. Colloids Surf. A Physicochem. Eng. Asp. 131 (1998) 137. https://doi.org/10.1016/S0927-7757(96)03882-4
28. E. Ruckenstein, G. Huber, H. Hoffmann. Surfactant Aggregation in the Presence of Polymers. Langmuir 3 (1987) 382. https://doi.org/10.1021/la00075a019
29. R. Mészáros, I. Varga, T. Gilanyi. Effect of polymer molecular weight on the polymer/surfactant interaction. J. Phys. Chem. B 109 (2005) 13538. https://doi.org/10.1021/jp051272x
30. H.L. Chen, C.C. Ko, T.L. Lin. Self-assembly in the bulk complexes of poly(ethylene-oxide) with amphiphilic dodecylbenzenesulfonic acid. Langmuir 18 (2002) 5619. https://doi.org/10.1021/la0202879