ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Ground and excited state characteristics of the nuclei with A = 6
S. B. Doma*
Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria, Egypt
*Corresponding author. E-mail address:
sbdoma@alexu.edu.eg
Abstract: The binding energy, the root-mean-square radius, the magnetic dipole moment, the electric quadrupole moment, and the moment of inertia of the nucleus 6Li are calculated by applying different models. The translation invariant shell model is applied to calculate the binding energy, the root-mean-square radius, and the magnetic dipole moment by using two- and three-body interactions. Also, the spectra of the nuclei with A = 6 are calculated by using the translation-invariant shell model. Moreover, the ft-value of the allowed transition: 6He(Jπ=0+;T=1)β- → 6Li(Jπ=1+;T'=1) is also calculated. Furthermore, the concept of the single-particle Schrodinger fluid for axially symmetric deformed nuclei is applied to calculate the moment of inertia of 6Li. Also, we calculated the magnetic dipole moment and the electric quadrupole moment of the nucleus 6Li in this case of axially symmetric shape. Moreover, the nuclear superfluidity model is applied to calculate the moment of inertia of 6Li, based on a single-particle deformed anisotropic oscillator potential added to it a spin-orbit term and a term proportional to the square of the orbital angular momentum, as usual in this case. The single-particle wave functions obtained in this case are used to calculate the magnetic dipole moment and the electric quadrupole moment of 6Li.
Keywords: translation invariant shell model, nuclei with A = 6, binding energy, spectrum, root-mean-square radius, magnetic dipole moment, quadrupole moment, ft-value, single-particle Schrodinger fluid, nuclear superfluidity model.
References:1. A.M. Lane. Studies in Intermediate Coupling: III The Lithium Isotopes. Proc. Phys. Soc. Sect. A 68(3) (1955) 189. https://doi.org/10.1088/0370-1298/68/3/308
2. F.C. Barker. Intermediate coupling shell-model calculations for light nuclei. Nucl. Phys. 83(2) (1966) 418. https://doi.org/10.1016/0029-5582(66)90582-7
3. H.A. Bethe, J. Goldstone. Effect of a repulsive core in the theory of complex nuclei. Proc. Roy. Soc. London A 238 (1957) 551. https://doi.org/10.1098/rspa.1957.0017
4. F.C. Khanna, Y.C. Tang, K. Wildermuth. 6Li Plus Neutron Configuration in 7Li. Phys. Rev. 124 (1961) 515. https://doi.org/10.1103/PhysRev.124.515
5. S.B. Doma, A.M. El-Zebidy. Cluster-Cluster Potentials for the Lithium Nuclei. Int. J. Mod. Phys. E 14(2) (2005) 189. https://doi.org/10.1142/S0218301305002989
6. T.I. Kopaleishvili et al. Alpha-Deuteron Model of the 6Li Nucleus. Soviet Physics JETP 11 (1960) 6. http://www.jetp.ac.ru/cgi-bin/e/index/r/38/6/p1758?a=list
7. N. Michel1, W. Nazarewicz, M. Ploszajczak. Proton-neutron coupling in the Gamow shell model: The Lithium chain. Phys. Rev. C 70 (2004) 064313. https://doi.org/10.1103/PhysRevC.70.064313
8. B.S. Cooper, J.M. Eisenberg. Odd-parity states in the A= 6 and 14 systems. Nucl. Phys. A 114 (1968) 184. https://doi.org/10.1016/0375-9474(68)90823-3
9. D.C. Zheng et al. Microscopic calculations of the spectra of light nuclei. Phys. Rev. C 48(3) (1993) 1083. https://doi.org/10.1103/PhysRevC.48.1083
10. D.C. Zhenge et al. Auxiliary potential in no-core shell-model calculations. Phys. Rev. C 51(5) (1995) 2471. https://doi.org/10.1103/PhysRevC.51.2471
11. P. Navrátil et al. Six-Nucleon Spectroscopy from a Realistic Nonlocal Hamiltonian. Phys. Rev. Lett. 87(17) (2001) 172502. https://doi.org/10.1103/PhysRevLett.87.172502
12. P. Navrátil, B.R. Barrett. Large-basis shell-model calculations for p-shell nuclei. Phys. Rev. C 57(6) (1998) 3119. https://doi.org/10.1103/PhysRevC.57.3119
13. S.B. Doma. Studies of positive parity states of nuclei with A = 6 in the unitary scheme model. Bulletin of the Georgian Academy of Science, Tbilisi State Univ. 74(3) (1974) 585.
14. S.B. Doma, T.I. Kopaleyshvili, I.Z. Machabeli. Study on the A = 6 nuclei in basis of the unitarity scheme model. Sov. J. Nucl. Phys. 21 (1975) 720.
15. S.B. Doma. Unitary scheme model calculations of A = 6 nuclei with realistic interactions. Ukr. J. Phys. 42(3) (1997) 279.
16. S.B. Doma. Ground state characteristics of the light nuclei with A<=6 on the basis of the translation invariant shell model by using nucleon-nucleon interaction. Chin. Phys. C 26(9) (2002) 941.
17. S.B. Doma. Unitary scheme model study of 4He with the Gogny, Pires and de Tourreil interaction. Helv. Phys. Acta 58 (1985) 1072. https://www.e-periodica.ch/digbib/view?pid=hpa-001%3A1985%3A58%3A%3A955#1076
18. S.B. Doma, N.A. El-Nohy, K.K. Gharib. The ground-state characteristics of deuteron using Gaussian potentials. Helv. Phys. Acta 69 (1996) 90. https://www.e-periodica.ch/digbib/view?pid=hpa-001%3A1996%3A69%3A%3A91#104
19. S.B. Doma. Study of Nuclei with A = 5 on the Basis of the Unitary Scheme Model. Int. J. Mod. Phys. E 12(3) (2003) 421. https://doi.org/10.1142/S021830130300134X
20. S.B. Doma, A.F.M. El-Zebidy, M.A. Abdel-Khalik. A Unitary Scheme Model to Calculation of the Nuclei with A = 7 Using Effective Two Body Interactions. Int. J. Nonlinear Sci. and Numerical Simulation 5(2) (2004) 99. https://doi.org/10.1515/IJNSNS.2004.5.2.99
21. S.B. Doma, A.F.M. El-Zebidy, M.A. Abdel-Khalik. The mean lifetime of the β-decay and the nuclear magnetic dipole moment for nuclei with A = 7. J. Phys. G: Nucl. Part. Phys. 34(1) (2007) 27. https://doi.org/10.1088/0954-3899/34/1/002
22. S.B. Doma, H.S. El-Gendy. Unitary scheme model calculations of the ground and excited state characteristics of 3H and 4He. J. Phys. Commun. 2(6) (2018) 065005. https://doi.org/10.1088/2399-6528/aac79f
23. S.B. Doma, H.S. El-Gendy, M.M. Hammad. Large basis unitary scheme model calculations for the mirror nuclei with A = 7. Chin. J. Phys. 63 (2020) 21. https://doi.org/10.1016/j.cjph.2019.10.026
24. D.R. Inglis. Particle derivation of nuclear rotation properties associated with a surface wave. Phys. Rev. 96(4) (1954) 1059. https://doi.org/10.1103/PhysRev.96.1059
25. A. Bohr, B.R. Mottelson. Nuclear Structure. Vol. II (New York: Benjamin, 1975). https://doi.org/10.1142/3530
26. D.R. Inglis. Nuclear moments of inertia due to nucleon motion in a rotating well. Phys. Rev. 103(6) (1956) 1786. https://doi.org/10.1103/PhysRev.103.1786
27. K.K. Kan, J.J. Griffin. Single-particle Schrodinger fluid. I. Formulation. Phys. Rev. C 15(3) (1977) 1126. https://doi.org/10.1103/PhysRevC.15.1126
28. K.K. Kan, J.J. Griffin. Independent Particle Schrodinger Fluid: Moments of Inertia. Nucl. Phys. A 301(2) (1978) 258. https://doi.org/10.1016/0375-9474(78)90264-6
29. S.B. Doma. The Single-Particle Schrodinger Fluid and Moments of Inertia of Deformed Nuclei. Chin. Phys. C 26(8) (2002) 836.
30. S.B. Doma, M.M. Amin. The single particle Schrodinger fluid and moments of inertia of the nuclei 24Mg, 25Al, 27Al, 183W and 238Pu. Int. J. Mod. Phys. E 11(5) (2002) 455
https://doi.org/10.1142/S0218301302001058;
S.B. Doma, M.M. Amin. Single Particle Schrodinger Fluid and Moments of Inertia of the Even- Even Uranium Isotopes. The Open Applied Mathematics Journal 3 (2009) 1
https://doi.org/10.2174/1874114200903010001;
S.B. Doma, H.S. El-Gendy. Investigations of the Collective Properties of the Even Uranium Isotopes. Phys. Rev. Res. Int. 4(2) (2014) 292.
https://journalpsij.com/index.php/PSIJ/article/download/23239/43331
31. S.B. Doma. The Structure of the Nucleus 6Li. ResearchGate (2015). https://doi.org/10.13140/RG.2.1.4357.5201
32. D. Gogny, P. Pires, R. De Tourreil. A smooth realistic local nucleon-nucleon force is suitable for nuclear Hartree-Fock calculations. Phys. Lett. B 32(7) (1970) 591. https://doi.org/10.1016/0370-2693(70)90552-6
33. S. Veerasamy, W.N. Polyzou. Momentum-space, Argonne V18 interaction. Phys. Rev. C 84(3) (2011) 034003. https://doi.org/10.1103/PhysRevC.84.034003
34. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla. Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 51(1) (1995) 38
https://doi.org/10.1103/PhysRevC.51.38;
B.S. Pudliner et al. Quantum Monte Carlo calculations of nuclei with A <∿ 7. Phys. Rev. C 56(4) (1997) 1720.
https://doi.org/10.1103/PhysRevC.56.1720
35. B.S. Pudliner et al. Quantum Monte Carlo Calculations of A ≤ 6 Nuclei. Phys. Rev. Lett. 74(22) (1995) 4396
https://doi.org/10.1103/PhysRevLett.74.4396;
S.C. Pieper et al. Realistic models of pion-exchange three-nucleon interactions. Phys. Rev. C 64(1) (2001) 014001
https://doi.org/10.1103/PhysRevC.64.014001;
S. Goudarzi, H.R. Moshfegh, P. Haensel. The role of three-body forces in nuclear symmetry energy and symmetry free energy. Nucl. Phys. A 969 (2018) 206.
https://doi.org/10.1016/j.nuclphysa.2017.10.007
36. V.V. Vanagas. Algebraic Methods in Nuclear Theory (Vilnius: Mintis, 1971). Google books
37. G.A. Lalazissis, C.P. Panos. Isospin dependence of the oscillator spacing. Phys. Rev. C 51(3) (1995) 1247. https://doi.org/10.1103/PhysRevC.51.1247
38. S.B. Doma. Moments of Inertia of Deformed Nuclei. Journal of Fractional Calculus and Applied Analysis 2(5) (1999) 637.
39. S.T. Belyaev. Effect of pairing correlations on nuclear properties. Mat. Fys. Medd. Dan. Vid. Selsk. 31 (1959) 11. http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2030-39/mfm-31-11.pdf
40. V.G. Neudatchin, Yu.F. Smirnov, N.F. Golovanova. Clustering Phenomena and High-Energy Reactions. In: Advances in Nuclear Physics. Vol. 11. J.W. Negele, E. Vogt (eds.) (New York: Plenum Press, 1979). https://www.springer.com/gp/book/9781461398868
41. S.B. Doma, I.Z. Machabeli. Orbital fractional parentage coefficients in the unitary scheme model. Proc. of Tbilisi University A 9 (1975) 57;
S.B. Doma. Orbital Fractional Parentage Coefficients for Nuclei with A = 3. Indian J. Pure Appl. Math. 10(5) (1979) 521.
42. S.G. Nilsson. Binding states of individual nucleons in strongly deformed nuclei. Dan. Mat. Fys. Medd. 29(16) (1955) 75. https://cds.cern.ch/record/212345/files/p1.pdf
43. S. Malmskog, J. Conijn. Nucl. Phys. 38 (1962) 196
https://doi.org/10.1016/0029-5582(62)91029-5;
F.C. Barker. Intermediate coupling shell-model calculations for light nuclei. Nucl. Phys. 83(2) (1966) 418.
https://doi.org/10.1016/0029-5582(66)90582-7
44. F. Ajzenberg-Selove. Energy levels of light nuclei A = 5 – 10. Nucl. Phys. A 490(1) (1988) 1. https://doi.org/10.1016/0375-9474(88)90124-8
45. P. Navrátil et al. Six-Nucleon Spectroscopy from a Realistic Nonlocal Hamiltonian. Phys. Rev. Lett. 87(17) (2001) 172502. https://doi.org/10.1103/PhysRevLett.87.172502
46. P. Raghavan. Table of nuclear moments. Atom. Data Nucl. Data Tabl. 42(2) (1989) 189. https://doi.org/10.1016/0092-640X(89)90008-9
47. W.F. Hornyak. Nuclear Structure (New York: Academic Press, 1975)
https://www.elsevier.com/books/nuclear-structure/hornyak/978-0-12-356050-6;
C.L. Dunford, R.R. Kinsey. NuDat System for Access to Nuclear Data. IAEA-NDS-205 (BNL-NCS-65687) (IAEA, Vienna, Austria, 1998).
https://doi.org/10.2172/638264