ЯДЕРНА ФІЗИКА NUCLEAR PHYSICS

УДК 539.171+539.172

https://doi.org/10.15407/jnpae2021.01.010

А. Т. Рудчик^{1,*}, А. А. Рудчик¹, О. Е. Куцик¹, К. Русек², К. В. Кемпер³, Е. П'ясецкі², А. Столяж², А. Тщіньска², Вал. М. Пірнак¹, О. А. Понкратенко¹, І. Строєк⁴, Є. І. Кощий⁵, Р. Сюдак⁶, С. Б. Сакута⁷, С. А. Вознюк¹, А. П. Ільїн¹, Ю. М. Степаненко¹, В. В. Улещенко¹, Ю. О. Ширма¹

¹ Інститут ядерних досліджень НАН України, Київ, Україна
 ² Лабораторія важких іонів Варшавського університету, Варшава, Польща
 ³ Відділ фізики Флоридського державного університету, Таллахасі, США
 ⁴ Національний центр ядерних досліджень, Варшава, Польща
 ⁵ Циклотронний інститут Техаського А&М університету, Техас, США
 ⁶ Інститут ядерної фізики ім. Г. Нєводнічаньского, Краків, Польща
 ⁷ Національний центр «Курчатовський інститут», Москва, Росія

⁸Київський національний університет імені Тараса Шевченка, Київ, Україна

*Відповідальний автор: rudchik@kinr.kiev.ua

ПРУЖНЕ Й НЕПРУЖНЕ РОЗСІЯННЯ ІОНІВ ¹⁵N ЯДРАМИ ¹³С ПРИ ЕНЕРГІЇ 84 МеВ

Отримано нові експериментальні дані диференціальних перерізів пружного й непружного розсіяння іонів ¹⁵N ядрами ¹³C при енергії $E_{\pi a 6}(^{15}N) = 84$ MeB. Експериментальні дані проаналізовано за методом зв'язаних каналів реакцій. Пружне й непружне розсіяння ядер ¹⁵N + ¹³C та найбільш важливі реакції передач нуклонів і кластерів включались у схему зв'язку каналів. Визначено параметри потенціалу Вудса - Саксона взаємодії ядер ¹⁵N + ¹³C в основних та збуджених станах, а також параметри деформації цих ядер. Оцінено внески реакцій одно- та двоступінчастих передач нуклонів і кластерів у диференціальні перерізи пружного й непружного розсіяння ядер ¹⁵N + ¹³C. Отримані в даній роботі результати дослідження пружного розсіяння ядер ¹⁵N + ¹³C при енергії $E_{\pi a 6}(^{15}N) = 84$ MeB порівняно з результатами дослідження пружного розсіяння іонів ¹⁵N ядрами ¹²C при енергії $E_{\pi a 6}(^{15}N) = 81$ MeB.

Ключові слова: ядерні реакції ¹³С(¹⁵N, ¹⁵N), E = 84 MeB, $\sigma(\theta)$, механізми розсіяння та параметри потенціалу Вудса - Саксона, метод зв'язаних каналів реакцій.

1. Вступ

Експериментальне дослідження пружного й непружного розсіяння важких іонів (A > 4) легкими та важкими ядрами широко використовується, як відомо, для отримання відомостей про потенціали ядро-ядерної взаємодії, механізми збудження, структуру та форму ядер тощо. Актуальними в даний час є розсіяння іонів нестабільних і рідкісних стабільних ізотопів ядер.

До останніх можна віднести пучки іонів ¹⁵N, розсіяння яких при енергії 84 МеВ досліджено в даній роботі. Раніше пружне розсіяння іонів ¹⁵N ядрами ¹³C та реакція ¹³C(¹⁵N, ¹⁴N)¹⁴C досліджено при енергіях $E_{лаб}$ (¹⁵N) = 30, 32 і 45 МеВ у роботі [1].

У даній роботі отримано нові кутові розподіли диференціальних перерізів пружного й непружного розсіяння іонів ¹⁵N при енергії 84 МеВ ядрами ¹³C з використанням спектрометричних експериментальних даних, поміряних на Варшавському циклотроні U-200P за допомогою (ΔE -E)-спектрометрів установки ICARE [2].

Одним з експериментів на пучку іонів ¹⁵N на циклотроні U-200Р було вимірювання $\Delta E(E)$ спектрів продуктів ядерних процесів при взаємодії іонів ¹⁵N з легкими ядрами мішеней, у тому числі з ¹²С. Результати дослідження експериментальних даних пружного й непружного розсіяння іонів ¹⁵N ядрами ¹²С при енергії $E_{\text{лаб}}(^{15}\text{N}) = 81$ MeB подано в роботах [3, 4], У даній роботі ці експериментальні дані порівнюються з пружним розсіянням ядер ¹⁵N + ¹³C. Виявлено розбіжності як експериментальних даних пружних розсіянь ядер ¹⁵N + ¹³C і $^{15}N + ^{12}C$, так і потенціалів Вудса - Саксона та їхніх взаємодій. Вияснення причин цих розбіжностей («ізотопічних ефектів») потребує спеціальних теоретичних досліджень, які можуть бути предметом окремої роботи.

Значну увагу в даній роботі приділено обчисленням внесків у пружне розсіяння ядер $^{15}N + ^{13}C$ різноманітних одно- й двоступінчастих реакцій передач нуклонів і кластерів. Спектроскопічні амплітуди (фактори) нуклонів і кластерів в

© А. Т. Рудчик, А. А. Рудчик, О. Е. Куцик, К. Русек, К. В. Кемпер, Е. П'ясецкі, А. Столяж, А. Тщіньска, Вал. М. Пірнак, О. А. Понкратенко, І. Строєк, Є. І. Кощий, Р. Сюдак, С. Б. Сакута, С. А. Вознюк, А. П. Ільїн, Ю. М. Степаненко, В. В. Улещенко, Ю. О. Ширма, 2021

ядрах, необхідні для розрахунків перерізів реакцій, обчислювалися в рамках трансляційноінваріантної моделі оболонок (ТІМО) [5].

У даній роботі наведено також результати дослідження непружного розсіяння ядер $^{15}N + ^{13}C$ із збудженням станів 3,088 - 3,547 МеВ ядра ^{13}C та станів 5,27 - 8,571 МеВ ядра ^{15}N . Вважалося, що збудження цих станів ядер ^{15}N та ^{13}C мають колективну природу, а тому теоретичні перерізи збуджених станів ядер обчислювалися в рамках ротаційної та вібраційної моделей.

2. Методика експерименту

Вимірювання диференціальних перерізів пружного й непружного розсіяння іонів ¹⁵N ядрами ¹³C та реакцій передач ¹³C(¹⁵N, *X*) при енергії $E_{\text{лаб}}(^{15}\text{N}) = 84$ МеВ проведено на циклотроні U-200P Лабораторії важких іонів Варшавського університету. Для отримання пучка іонів ¹⁵N

було використано збагачену цим ізотопом кальцієву селітру (Ca(NO₃)₂).

В експерименті використовувалась самопідтримна мішень вуглецю, збагачена приблизно до 85 % ізотопом ¹³С товщиною ~ 0,5 мг/см². Експеримент проводився на експериментальній установці ICARE [2] з використанням (ΔE -E)-методики з кремнієвими ΔE - і E-детекторами товщиною 40 та 300 мкм відповідно. В одному із (ΔE -E)-спектрометрів ΔE -детектором була іонізаційна камера.

Розкид енергії іонів 15 N на мішені не перевищував 0,5 %.

Типовий $\Delta E(E)$ -спектр продуктів реакцій ¹³С(¹⁵N, X) показано на рис. 1. Видно, що експериментальна методика забезпечувала розділення продуктів реакцій за зарядами та частково за масами. Для досліджень в основному використовувалась спектрометрична інформація продуктів ядерних процесів із зарядами Z = 3 - 7.

Рис. 1. Типовий $\Delta E(E)$ -спектр продуктів реакцій ¹³С(¹⁵N, X) при енергії $E_{\text{лаб}}(^{15}N) = 84$ MeB.

Типові енергетичні $\Delta E(E)$ -спектри ¹⁵N і ¹³C з розсіяння ¹³C(¹⁵N, ¹⁵N)¹³C та реакції ¹³C(¹⁵N, ¹³C)¹⁵N, отримано проектуванням відповідних двовимірних локусів цих ядер на *E*-вісь, показано на рис. 2: *а*) спектр ¹⁵N з неперервним фоном від багаточастинкових реакцій на рисунку показано суцільною кривою; *б*) спектр ¹⁵N після вилучення неперервного фону (криві – наближен-

ня експериментальних піків симетричними гауссіанами); e) спектр ¹³С з неперервним фоном від багаточастинкових реакцій (суцільна крива); e) спектр ¹³С після вилучення неперервного фону.

Неперервні фони експериментальних спектрів ядер ¹⁵N і ¹³C визначалися наближенням глибоких мінімумів спектрів параметризованими функціями

$$N(E) = \sum_{i} N_{0i} \left[1 + \exp\left(-\frac{E - E_{1i} + E_{2i}/2}{H_{1i}}\right) \right]^{-1} \left\{ 1 - \left[1 + \exp\left(-\frac{E - E_{1i} - E_{2i}/2}{H_{2i}}\right) \right]^{-1} \right\}$$
(1)

методом підгонки параметрів N_{0i} , E_{1i} , E_{2i} , H_{1i} , H_{2i} .

Піки експериментальних спектрів апроксимувалися симетричними гауссіанами з напівширинами 200 кеВ, зважаючи на розкид енергії пучка іонів на мішені та енергетичну роздільну здатність експериментальної методики ~ 400 кеВ.

Рис. 2. Типові енергетичні спектри ядер ¹⁵N і ¹³C – продуктів пружного й непружного розсіяння ¹³C(¹⁵N, ¹⁵N)¹³C при енергії $E_{na6}(^{15}N) = 84$ MeB. Кривими показано: (*a*, *в*) – наближення неперервних фонів від багаточастинкових реакцій; (*б*, *г*) – наближення експериментальних піків симетричними гауссіанами.

Площі гауссіанів експериментальних піків іонів ¹⁵N використовувалися для обчислення диференціальних перерізів розсіяння іонів ¹⁵N на малі кути $\theta^{o}_{c.ц.м.}(^{15}N)$, а площі гауссіанів піків ядер віддачі ¹³C для розсіяння іонів ¹⁵N на великі кути $\theta^{o}_{c.ц.м.}(^{15}N) = 180^{\circ} - \theta^{o}_{c.ц.м.}(^{13}C)$. Таким способом отримано кутові розподіли перерізів пружного й непружного розсіяння іонів ¹⁵N у повних кутових діапазонах.

Похибки в обчисленні площ частково перекритих піків не перевищували 20 %. Для повністю перекритих піків ці похибки становили 30 - 40 %.

Отримані у відносних одиницях перерізи пружного розсіяння ядер $^{15}N + ^{13}C$ нормувалися до обчислених перерізів за оптичною моделлю (ОМ) на малих кутах ($\theta_{c.ц.м.} < 40^\circ$), де домінує кулонівське розсіяння та ОМ-перерізи слабо за-

 $d\sigma/d\Omega$, мб/ср

лежать від невизначеності параметрів оптичного потенціалу. Отриманий множник абсолютизації перерізів пружного розсіяння цих ядер використовувався також для нормування диференціальних перерізів непружного розсіяння. Похибка абсолютизації диференціальних перерізів пружного й непружного розсіяння ядер ¹⁵N + ¹³C не перевищує 20 %.

На рис. З диференціальні перерізи пружного розсіяння іонів ¹⁵N ядрами ¹³C при енергії $E_{\rm лаб}(^{15}N) = 84$ МеВ порівнюються залежно від переданого імпульсу q_t з даними такого самого розсіяння при енергії $E_{\rm лаб}(^{15}N) = 45$ МеВ [1] та з даними пружного розсіяння ядер ¹⁵N + ¹²C при енергії $E_{\rm лаб}(^{15}N) = 81$ МеВ [3, 4]. Видно значні відмінності цих розсіянь ядер при $q_t > 2$ фм⁻¹.

Рис. 3. Порівняння диференціальних перерізів пружного розсіяння ¹³C(¹⁵N, ¹⁵N)¹³C при енергіях $E_{\text{лаб}}(^{15}N) = 84$ MeB і 45 MeB [1] з пружним розсіянням ¹²C(¹⁵N, ¹⁵N)¹²C при енергії $E_{\text{лаб}}(^{15}N) = 81$ MeB [3, 4] залежно від переданих імпульсів q_i .

3. Аналіз експериментальних даних

Отримані експериментальні дані пружного й непружного розсіяння іонів ¹⁵N ядрами ¹³С проаналізовано за методом зв'язаних каналів реакцій (МЗКР) із включенням у схему зв'язку каналів розсіяння та реакцій одно- й двоступінчастих передач нуклонів і кластерів. Для проведення МЗКР-розрахунків використовувалась програма FRESCO [6].

Необхідні схеми збуджень ядер ¹⁵N і ¹³С показано на рис. 4, а діаграми реакцій передач - на рис. 5.

Рис. 4. Схеми переходів ядер ¹⁵N і ¹³С у збуджені стани. Дугами показано процеси переорієнтації спінів ядер j > 1/2.

$\begin{array}{c} {}^{13}\text{C} {}^{15}\text{N} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$+ \frac{{}^{13}C}{{}^{14}C} {}^{15}$	$\frac{13}{10} + \frac{13}{15} + \frac{12}{15} + 12$	$\begin{array}{c} 13_{\rm C} \\ n \\ 15_{\rm N} \end{array} + \begin{array}{c} 13_{\rm C} \\ n \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ n \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ n \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ n \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ n \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ n \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ n \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ n \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ n \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ 15_{\rm N} \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ 15_{\rm N} \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ 15_{\rm N} \\ 15_{\rm N} \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ 15_{\rm N} \end{array} + \begin{array}{c} 14_{\rm C} \\ 15_{\rm N} \\ 15$	$n + \frac{13}{15}N$
$\frac{{}^{13}C}{p} \frac{{}^{14}N}{p} \frac{{}^{13}C}{p} + \frac{{}^{13}C}{p} \frac{{}^{13}C}{{}^{15}N} + \frac{{}^{13}C}{{}^{15}N}$	12 B 13 C 13 P + 10 P	$ \begin{array}{c} 3C & {}^{17}O & {}^{13}C \\ \hline \alpha & & \alpha \\ \hline 5N & {}^{11}B & {}^{15}N \end{array} $	$+ \frac{{}^{13}C {}^{9}Be {}^{13}C}{{}^{13}C} {}^{13}F {}^{13}F {}^{15}N$	

Рис. 5. Діаграми реакцій одно- й двоступінчастих передач нуклонів і кластерів, внески яких зараховувалися в розсіяння ядер $^{15}N + ^{13}C$.

Вважалося, що низькоенергетичні збудження ядер мають колективну природу (ротаційну або вібраційну). Для обчислення переходів ядер ¹⁵N і ¹³С у ці збуджені стани використовувався формфактор [6]

$$V_{\lambda}(r) = -\frac{\delta_{\lambda}}{\sqrt{4\pi}} \frac{dU(r)}{dr},$$
(2)

де δ_{λ} – параметр деформації ядра λ -мультипольності; U(r) – потенціал взаємодії ядер ¹⁵N + ¹³C.

У розрахунках перерізів непружного розсіяння ядер ¹⁵N + ¹³C за МЗКР використовувалися параметри деформації ядер δ_{λ} , подані в табл. 1. Там же містяться також значення параметрів деформації $\beta_{\lambda} = \delta_{\lambda}/R$ для радіуса ядра $R = 1,25 A^{1/3}$ фм.

V(r) = -	δ_{λ}	dU(r))	(
$v_{\lambda}(r) = -$	$\sqrt{4\pi}$	dr	,	(4

Таблиця 1. Параметри деформації збуджених станів ядер ¹³С і ¹⁵N

Ядра	E_{36} , MeB	J^{π}	λ	δ _λ , фм	$\beta_{\lambda}*$	Літ.
130	3,088	$1/2^{+}$	2	1,00	0,34	[7]
	3,684	3/2-	1	0,90	0,31	[7]
	3,854	5/2+	3	0,50	0,17	[7]
	6,864	5/2+	3	0,50	0,17	[7]
C	7,490	7/2+	3	0,50	0,17	[7]
	7,547	5/2-	2	0,90	0,31	[7]
	7,680	3/2+	1	1,0	0.34	[7]
	8,200	3/2+	1	1,0	0.34	[7]
	5,270	5/2+	3	1,0	0,32	[8]
	5,299	1/2+	1	1,0	0,32	[8]
¹⁵ N	6,324	3/2-	2	1,0	0,32	[8]
	7,155	5/2+	3	1,0	0,32	[8]
	7,301	3/2+	1	1,0	0,32	[8]
	7,567	7/2+	3	1,0	0,32	[8]

* $\beta_{\lambda} = \delta_{\lambda}/R \ (R = 1.25 \ A^{1/3}).$

Спектроскопічні амплітуди S_x нуклонів і кластерів x в ядрах A = C + x, необхідні для МЗКРрозрахунків реакцій передач, обчислювались за ТІМО [5], за допомогою програми DESNA [9, 10]. Ці спектроскопічні амплітуди подано в табл. 2.

Таблиця 2.	Спектроскопічні амплітуди нуклонів
i	кластерів <i>х</i> в ядрах <i>A</i> = <i>C</i> + <i>x</i>

Α	С	x	nL_J	S_x
¹³ C	⁹ Be	α	$2D_2$	0,504
¹³ C	$^{12}\mathbf{B}$	р	$1P_{1/2}$	0,283
			$1P_{3/2}$	0,866
¹³ C	¹² C	n	$1P_{1/2}$	0,601
$^{14}\mathrm{C}$	¹³ C	n	$1P_{1/2}$	-1,094
^{14}N	¹³ C	р	$1P_{3/2}$	0,461
			$1P_{1/2}$	0,163
¹⁵ N	${}^{11}B$	α	$2D_2$	0,435 ^(a)
¹⁵ N	¹³ C	d	$2S_1$	0,248 ^(a)
			$1D_1$	0,444 ^(a)
¹⁵ N	¹⁴ C	р	$1P_{1/2}$	-0,598
			$1F_{5/2}$	0,296
¹⁵ N	^{14}N	n	$1P_{1/2}$	$-1,091^{(a)}$
			$1P_{3/2}$	0,386
^{16}N	¹⁵ N	n	$1D_{3/2}$	-0,270
¹⁶ O	¹⁵ N	р	$1P_{1/2}$	-1,461 ^(a)
¹⁷ O	¹³ C	α	$2D_2$	-0,468
¹⁹ F	¹⁵ N	α	$3S_0$	-0,638

$$^{(a)}S_{FRESCO} = (-1)^{J_C + j - J_A} S_x = -S_x$$

Хвильові функції відносного руху нуклонів і кластерів *x* в ядрах A = C + x обчислювалась стандартним способом підгонки глибин *V* дійсних потенціалів типу Вудса - Саксона до експериментальних значень енергій зв'язку E_x частинок *x* в ядрах *A*. При цьому використовувались параметри $a_v = 0,65$ фм і $r_v = 1,25A^{1/3} / (C^{1/3} + x^{1/3})$ фм.

У розрахунках диференціальних перерізів розсіяння ядер $^{15}N + ^{13}C$ за МЗКР для взаємодії ядер $^{15}N + ^{13}C$ використовувався потенціал ядроядерної взаємодії Вудса - Саксона (WS)

$$U(r) = -V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} - iW_S \left[1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}$$
(3)

і кулонівський потенціал взаємодії ядер як рівномірно заряджених куль з радіусами

$$R_i = r_i(A_1^{1/3} + A_2^{1/3}), \quad i = V, W, C,$$

а також оптичний фолдінг-потенціал DF (doublefolded potential, потенціал подвійної згортки взаємодії нуклонів ядер) з уявною частиною *W*_{DF}

$$U_{\rm DF} = V_{\rm DF} + iW_{\rm DF} = V_{\rm DF} + i0.6V_{\rm DF}.$$
 (4)

Для розрахунків фолдінг-потенціалу взаємодії ядер $^{15}N + ^{13}C$ використано програму DFPOT [11] та розподіли нуклонів в ядрах ^{15}N і ^{13}C з роботи [12].

Початкові значення параметрів $X_i = \{V_0, r_V, a_V, W_S, r_W, a_W\}$ потенціалу WS визначались методом підгонки цього потенціалу до потенціалу DF у поверхневій області. Уточнення їхніх значень забезпечувалось у процесі підгонки M3KP-розрахунків до експериментальних даних пружного розсіяння ядер ¹⁵N + ¹³C при енергії $E_{na6}(^{15}N) = 84$ MeB. Отримані таким методом параметри потенціалу WS взаємодії ядер ¹⁵N + ¹³C подано в табл. 3.

Ядра	$E_{\rm лаб}, {\rm MeB}$	V ₀ , MeB	<i>r</i> _V , фм	<i>а</i> _V , фм	W _s , MeB	<i>r</i> _W , фм	<i>а</i> _{<i>W</i>} , фм	Літ.
15N + 13C	84	220	0,79	0,67	9,7	0,90	0,67	Дана робота
N + C	45	100	0,95	0,70	30,0	1,00	0,30	[1]
$^{15}N + ^{12}C$	81	195	0,79	0,75	8,0	1,25	0,75	[3, 4]

Таблиця 3. Параметри потенціалів взаємодії ядер

Для наочності дійсні та уявні частини потенціалів DF і WS порівнюються на рис. 6. Видно лише незначні відмінності дійсних частин V_{DF} і V потенціалів DF і WS при r > 3 фм.

На рис. 7 показано кутовий розподіл диференціальних перерізів пружного розсіяння ядер ¹⁵N + ¹³C при енергії $E_{\rm лаб}(^{15}N) = 84$ MeB. Штриховими кривими показано обчислені M3KPперерізи пружного розсіяння ядер ¹⁵N + ¹³C з використанням потенціалу WS (див. табл. 3) для потенціального розсіяння (крива <pot>) та реакцій передач, діаграми яких показано на рис. 5 для передач дейтронів, протонів р + р, нейтронів n + n, нуклонів p + n та альфа-частинок α + α (криві <d>, <pp>, <nn>, <pn> та < $\alpha\alpha$ > відповідно). Суцільною кривою Σ показано когерентну суму всіх процесів.

Видно, що основну роль у пружному розсіянні ядер ¹⁵N + ¹³C відіграє потенціальне розсіяння. На великих кутах незначні внески дають реакції передач нейтронів n + n та протонів (криві <nn> і <pp>). Внески передач інших частинок у пружне розсіяння ядер ¹⁵N + ¹³C мізерні. Когерентна сума перерізів потенціального розсіяння та реакцій передач задовільно описує експериментальні дані в усьому кутовому діапазоні (крива Σ).

Рис. 6. Порівняння дійсних *V*, V_{DF} та уявних *W*, $W_{DF} = 0.6 V_{DF}$ частин потенціалів WS і DF взаємодії ядер ¹⁵N + ¹³C.

Аналіз даних пружного розсіяння ядер ¹⁵N + + ¹³C за МЗКР проведено також із використанням у розрахунках оптичного фолдінг-потенціалу DF взаємодії цих ядер, потенціалу WS пружного розсіяння ¹⁵N + ¹³C при енергії $E_{na6}(^{15}N) = 45$ MeB та потенціалу WS пружного розсіяння ¹⁵N + ¹²C при енергії $E_{na6}(^{15}N) = 81$ MeB. Ці МЗКР-розрахунки для пружного розсіяння ядер ¹⁵N + ¹³C показано на

Рис. 7. Диференціальні перерізи пружного розсіяння іонів ¹⁵N ядрами ¹³С при енергії $E_{\rm лаб}(^{15}N) = 84$ MeB. Кривими показано розрахунки M3KP-перерізів різних процесів пружного розсіяння ядер ¹⁵N + ¹³C з використанням потенціалу WS (див. табл. 3).

рис. 8 кривими $\Sigma_{13C+15N(84)}$, Σ_{DF} , $\Sigma_{13C+15N(45)}$ та $\Sigma_{12C+15N(81)}$ відповідно. Видно, що МЗКР-перерізи пружного розсіяння ядер $^{15}N + ^{13}C$ при енергії 84 МеВ, обчислені при використанні фолдінг-потенціалу DF взаємодії ядер $^{15}N + ^{13}C$ та параметрів вище зазначених додаткових потенціалів WS, значно відрізняються від експериментальних даних цього розсіяння.

Рис. 8. Порівняння МЗКР-розрахунків пружного розсіяння ядер ¹⁵N + ¹³C при енергії $E_{\rm лаб}(^{15}N) = 84$ MeB (суцільна крива $\Sigma_{13C+15N(84)}$) і МЗКР-розрахунків цього розсіяння при використанні оптичного фолдінгпотенціалу DF (крива $\Sigma_{\rm DF}$), потенціалу WS розсіяння ¹⁵N + ¹³C при енергії $E_{\rm лаб}(^{15}N) = 45$ MeB (крива $\Sigma_{13C+15N(45)}$ та параметрів потенціалу WS пружного розсіяння ¹⁵N + ¹²C при енергії $E_{\rm лаб}(^{15}N) = 81$ MeB (крива $\Sigma_{12C+15N(81)}$ (див. табл. 3).

Диференціальні перерізи непружного розсіяння ядер $^{15}N + ^{13}C$ для збуджених станів ядер ^{15}N і ^{13}C (див. рис. 4) показано на рис. 9 - 11. Деякі із збуджених станів цих ядер не розділялись в експерименті, а тому для них отримано сумарні перерізи.

Як зазначалося вище, в МЗКР-розрахунках вважалось, що стани деформованих ядер ¹⁵N i ¹³C мають колективну природу збуджень (*ротаційні* та *вібраційні* стани). При МЗКР-розрахунках збуджень цих станів використовувався форм-фактор (2). Параметри деформацій δ_{λ} цих ядер подано в табл. 1.

Штриховими кривими на рис. 9 - 11 показано МЗКР-розрахунки перерізів непружного розсіяння ядер $^{15}N + ^{13}C$ для нерозділених в експерименті станів ядер ^{15}N і ^{13}C , а суцільними кривими Σ – їхні некогерентні суми.

На рис. 9 показано експериментальні дані та M3KP-перерізи для збуджених станів 3,088 MeB $(1/2^+)$, 3,684 MeB $(3/2^-)$ + 3,854 MeB $(5/2^+)$ ядра

¹³С та збуджених станів 5,270 MeB $(5/2^+)$ + + 5,298 MeB $(1/2^+)$ ядра ¹⁵N.

На рис. 10 показано експериментальні дані та M3KP-перерізи для збуджених станів 6,324 MeB $(3/2^{-})$ і 7,155 MeB $(5/2^{+})$ + 7,301 MeB $(3/2^{+})$ ядра ¹⁵N, а на рис. 11 — для збуджених станів 7,567 MeB $(7/2^{+})$, 8,313 MeB $(1/2^{+})$ + 8,571 MeB $(3/2^{+})$ ядра ¹⁵N та 8,200 MeB $(3/2^{+})$ ядра ¹³C.

Рис. 9. Диференціальні перерізи непружного розсіяння іонів ¹⁵N ядрами ¹³C при енергії $E_{\rm лаб}(^{15}N) = 84$ MeB для збуджених станів 3,088 - 3,854 MeB ядра ¹³C та станів 5,270 MeB + 5,298 MeB ядра ¹⁵N. Штрихові криві – M3KP-розрахунки для збуджених станів ядер ¹⁵N і ¹³C, криві Σ – суми M3KP-перерізів для нерозділених в експерименті станів ядер.

Рис. 10. Диференціальні перерізи непружного розсіяння іонів ¹⁵N ядрами ¹³C при енергії $E_{\pi a 6}(^{15}N) = 84$ MeB для збуджених станів 6,324 MeB (3/2⁻) та 7,155 MeB (5/2⁺) + 7,301 MeB (3/2⁺) ядра ¹⁵N. Криві – M3KP-розрахунки для збуджених станів ядер ¹⁵N і ¹³C, криві Σ – суми M3KP-перерізів нерозділених в експерименті станів ядер.

Видно, що МЗКР-перерізи розділених в експерименті станів ядер ¹⁵N і ¹³С та відповідні суми МЗКР-перерізів для нерозділених станів ядер (криві Σ) задовільно описують експериментальні дані непружного розсіяння ядер ¹⁵N + ¹³C.

Рис. 11. Диференціальні перерізи непружного розсіяння іонів ¹⁵N ядрами ¹³C при енергії $E_{\text{лаб}}(^{15}\text{N}) = 84$ MeB для збуджених станів 7,567 MeB (7/2⁺), 8,313 MeB (1/2⁺) + 8,571 MeB (3/2⁺) ядра ¹⁵N та 8,200 MeB (3/2⁺) ядра ¹³C. Криві — МЗКР-розрахунки для збуджених станів ¹⁵N і ¹³C. Криві Σ – суми МЗКР-перерізів нерозділених в експерименті станів ядер.

4. Основні результати та висновки

Отримано нові експериментальні дані диференціальних перерізів пружного й непружного розсіяння іонів ¹⁵N ядрами ¹³C при енергії $E_{ла6}(^{15}N) = 84$ МеВ для основних станів ядер ¹⁵N і ¹³C та збуджених станів 3,088 МеВ (1/2⁺), 3,684 МеВ (3/2⁻) + 3,854 МеВ (5/2⁺) ядра ¹³C та збуджених станів 5,270 МеВ (5/2⁺) + 5,299 МеВ (1/2⁺), 6,323 МеВ (3/2⁻), 7,155 МеВ (5/2⁺) + + 7,301 МеВ (3/2⁺), 7,567 МеВ (7/2⁺), 8,313 МеВ (1/2⁺) + 8,571 МеВ (3/2⁺) ядра ¹⁵N. Експериментальні дані отримано в широкому діапазоні кутів.

Експериментальні дані проаналізовано за МЗКР із включенням у схему зв'язку каналів пружного й непружного розсіяння ядер $^{15}N + ^{13}C$ та реакцій передач нейтронів, протонів, d- і α -кластерів. Розрахунки непружного розсіяння ядер ^{15}N і ^{13}C проводились у рамках моделей колективних ротаційних та вібраційних збуджень ядер.

У розрахунках МЗКР-перерізів розсіяння ядер $^{15}N + ^{13}C$ та реакцій передач використано потенціали Вудса - Саксона WS та фолдінг-потенціал DF (V_{DF}) з уявною частиною $W_{DF} = 0.6V_{DF}$.

Визначено параметри потенціалу WS з підгонки M3KP-перерізів до експериментальних даних пружного розсіяння ядер $^{15}N + ^{13}C$. Установлено, що кутові розподіли експериментальних даних непружного розсіяння цих ядер задовільно описуються M3KP-перерізами в рамках моделі колективного збудження ядер ^{15}N і ^{13}C при використанні параметрів деформацій ядер, поданих у роботах [7] і [8].

Досліджено внески реакцій одно- та двоступінчастих реакцій передач у пружне розсіяння ядер $^{15}N + ^{13}C$ з використанням спектроскопічних амплітуд нуклонів і кластерів в ядрах та обчислених у рамках ТІМО, використовуючи програму DESNA [9, 10]. Установлено, що в пружному розсіянні ядер $^{15}N + ^{13}C$ основну роль відіграє потенціальне розсіяння іонів ^{15}N і незначні внески в це розсіяння дають реакції передач нейтронів та протонів на середніх і великих кутах.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ / REFERENCES

- A. Gamp et al. Interfering proton and neutron transfer in the reaction ¹³C(¹⁵N, ¹⁴N)¹⁴C. Nucl. Phys. A 250 (1975) 341.
- 2. E Piasecki et al. *Project ICARE at HIL* (Warsaw: Heavy Ion Laboratory, 2007) 38 p.
- А.Т. Рудчик та ін. Пружне і непружне розсіяння іонів ¹⁵N ядрами ¹²С при енергії 81 МеВ. Ядерна фізика та енергетика 19(3) (2018) 210. / А.Т. Rudchik et al. Elastic and inelastic scattering of ¹⁵N ions by ¹²C nuclei at energy 81 MeV. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 19(3) (2018) 210. (Ukr)
- 4. A.T. Rudchik et al. Elastic and inelastic scattering of ¹⁵N ions by ¹²C at 81 MeV and the effect of transfer

channels. Acta Physica Polonica B 50 (2019) 753.

- Yu. F Smirnov, Yu. M Tchuvil'sky. Cluster spectroscopic factors for the *p*-shell nuclei. Phys. Rev. C 15 (1977) 84.
- I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- 7. S.Yu. Mezhevych et al. The ${}^{13}C + {}^{11}B$ elastic and inelastic scattering and isotopic effects in the of 12 , ${}^{13}C + {}^{11}B$ scattering. Nucl. Phys. A 724 (2003) 29.
- A.T. Rudchik et al. ¹⁵N elastic and inelastic scattering by ¹¹B at 84 MeV. Nucl. Phys. A 939 (2015) 1.
- 9. А.Т Рудчик, Ю.М. Чувильский. Вычисление спектроскопических амплитуд для произвольных

ассоциаций нуклонов в ядрах 1р-оболочки (программа DESNA) Препринт Ин-та ядерных исслед. АН УССР КИЯИ-82-12 (Киев, 1982) 27 с. / А.Т. Rudchik, Yu.M. Tchuvil'sky. Spectroscopic amplitude calculations for different clusters in the 1p-shell nuclei (code DESNA). Preprint of the Institute for Nuclear Research AS UkrSSR (Kyiv, 1982) 27 p. (Rus)

 А.Т Рудчик, Ю.М. Чувильский. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1р-оболочки и анализ реакций многонуклонных передач. УФЖ 30 (1985) 819. / А.Т. Rudchik, Yu.M. Tchuvil'sky. Spectroscopic amplitudes of multinuclear clusters in the 1p-shell nuclei and multinuclear transfer reaction analysis. Ukr. J. Phys. 30 (1985) 819. (Rus)

- J. Cook DFPOT: a program for the calculation of double folded potentials. Comp. Phys. Com. 25 (1982) 125.
- H. De Vries, C.W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495.

A. T. Rudchik^{1,*}, A. A. Rudchik¹, O. E. Kutsyk¹, K. Rusek², K. W. Kemper³, E. Piasecki², A. Stolarz², A. Trczińska², Val. M. Pirnak¹, O. A. Ponkratenko¹, I. Strojek⁴, E. I. Koshchiy⁵, R. Siudak⁶, S. B. Sakuta⁷, S. A. Vozniuk¹, A. P. Ilyin¹, Yu. M. Stepanenko¹, V. V. Uleshchenko¹, Yu. O. Shyrma¹

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
 ² Heavy Ion Laboratory, Warsaw University, Warsaw, Poland
 ³ Physics Department, Florida State University, Tallahassee, USA
 ⁴ National Institute for Nuclear Research, Warsaw, Poland
 ⁵ Cyclotron Institute, Texas A&M University, College Station, USA
 ⁶ H. Niewodniczanski Institute of Nuclear Physics, Krakow, Poland
 ⁷ National Research Centre "Kurchatov Institute", Moscow, Russia

*Corresponding author: rudchik@kinr.kiev.ua

ELASTIC AND INELASTIC SCATTERING OF ¹⁵N IONS BY ¹³C NUCLEI AT ENERGY 84 MeV

New experimental data of the ¹⁵N + ¹³C elastic and inelastic scattering were obtained at the energy $E_{lab}(^{15}N) = 84$ MeV. The data were analyzed within the coupled-reaction-channels method. The elastic and inelastic scattering of nuclei ¹⁵N + ¹³C as well as the more important nucleon and cluster transfer reactions were included in the channels-coupling scheme. The WS potential parameters for the ¹⁵N + ¹³C nuclei interactions in ground and excited states as well as deformation parameters of these nuclei were deduced. The contributions of one- and two-step transfers in the ¹⁵N + ¹³C elastic and inelastic scattering were estimated. The results of the ¹⁵N + ¹³C elastic scattering at the energy $E_{lab}(^{15}N) = 84$ MeV, obtained in this work, were compared with that of the ¹⁵N + ¹²C elastic scattering at the energy $E_{lab}(^{15}N) = 81$ MeV.

Keywords: nuclear reactions ${}^{13}C({}^{15}N)$, E = 84 MeV, $\sigma(\theta)$, scattering mechanisms and Woods-Saxon potential, coupled-reaction-channels analysis.

Надійшла/Received 21.09.2020