#### Фатіма Хамід Обід\*, Алі Халаф Хасан

Кафедра фізики, Факультет освіти для жінок, Університет Куфи, Наджаф, Ірак

#### \*Відповідальний автор: fatimahh.alfatlawi@uokufa.edu.iq

# РОЗРАХУНКИ ПАРАМЕТРА КВАДРУПОЛЬНОЇ ДЕФОРМАЦІЇ β2 З НАВЕДЕНИХ ІМОВІРНОСТЕЙ ПЕРЕХОДУ *B*(*E*2)↑ ДЛЯ **0**<sup>+</sup><sub>1</sub> → 2<sup>+</sup><sub>1</sub> ПЕРЕХОДІВ У ПАРНО-ПАРНИХ <sup>62-68</sup>Zn ІЗОТОПАХ

Розраховано енергії збуджених рівнів, наведено імовірності переходу B(E2), квадрупольні моменти та параметри деформації для ізотопів <sup>62-68</sup>Zn з числом нейтронів N = 32, 34, 36 та 38. Для всіх станів ядер fp-оболонки застосовувався код NuSheIIX. Розрахунки по оболонковій моделі для ізотопів цинку проводились із частинками на орбітах lp<sub>3/2</sub>, 0f<sub>5/2</sub> та lp<sub>1/2</sub> за межами подвійно-магічного ядра <sup>56</sup>Ni. Використовуючи модельний простір f5p та f5pvh взаємодію, було отримано теоретичні результати, які було порівняно з наявними експериментальними даними. Значення енергій збудження, імовірностей переходу B(E2), квадрупольних моментів  $Q_0$  та параметрів деформації  $\beta_2$  знаходяться в повній згоді з експериментальними значеннями. Крім того, були визначені рівні енергій для кутових моментів та парностей, які були недостатньо встановлені та визначені експериментально. Було також передбачено деякі нові рівні енергії та ймовірності електричних переходів для ізотопів <sup>62-68</sup>Zn, які раніше були відсутні в експериментальних даних.

Ключові слова: B(E2)<sup>↑</sup>, основні стани, код NuSheIIX, параметри деформації.

### Fatema Hameed Obeed\*, Ali Khalaf Hasan

#### Department of Physics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq

### \*Corresponding author: fatimahh.alfatlawi@uokufa.edu.iq

## CALCULATION OF QUADRUPOLE DEFORMATION PARAMETER $\beta_2$ FROM REDUCED TRANSITION PROBABILITY $B(E2)\uparrow$ FOR $0^+_1 \rightarrow 2^+_1$ TRANSITION AT EVEN-EVEN <sup>62-68</sup>Zn ISOTOPES

In this work the excited energy levels, reduced transition probabilities  $B(E2)\uparrow$ , intrinsic quadrupole moments, and deformation parameters have been calculated for <sup>62-68</sup>Zn isotopes with neutrons number N = 32, 34, 36 and 38. NuSheIIX code has been applied for all energy states of fp-shell nuclei. Shell-model calculations for the zinc isotopes have been carried out with active particles distributed in the  $lp_{3/2}$ ,  $0f_{5/2}$ , and  $lp_{1/2}$  orbits outside doubly magic closed <sup>56</sup>Ni core nucleus. By using f5p model space and f5pvh interaction, the theoretical results have been obtained and compared with the available experimental results. The excited energies values, electric transition probability B(E2), intrinsic quadrupole moment  $Q_0$ , and deformation parameters  $\beta_2$  have appeared in complete agreement with the experimental values. As well as, the energy levels have been confirmed and determined for the angular momentum and parity of experimental values that have not been well established and determined experimentally. On the other hand, it has been predicted some of the new energy levels and electric transition probabilities for the <sup>62-68</sup>Zn isotopes under this study which were previously unknown in experimental information.

*Keywords*:  $B(E2)\uparrow$ , ground-states, NuSheIIX code, deformation parameters.

#### REFERENCES

- 1. K.L.G. Heyde. The Nuclear Shell Model (Bristol: Springer, 1990).
- 2. V.G. Gueorguiev. Mixed-Symmetry Shell-Model Calculations in Nuclear Physics. Ph. D. Thesis (Sofia University, 2002) 120 p.
- 3. M. Bauer, V.G. Canuto. Spacing of nuclear mass surfaces and the super fluid model of nuclei. Phys. Lett. 7 (1963) 261.
- 4. D. Chanda. A study of nuclear binding energy of magic number nuclei and energy splitting considering Independent particle shell model. International Journal of Advanced Scientific Research and Management 3(2) (2018) 106.
- 5. F. Benrachi, M. Khiter, N. Laoue. Spectroscopic properties of <sup>130</sup>Sb, <sup>132</sup>Te and <sup>134</sup>I nuclei in <sup>100-132</sup>Sn magic cores. EPJ Web of Conferences 154 (2017) 01016.
- 6. A.K. Hamoudi. Statistical fluctuations of BE2 and B(M1) matrix elements in fp-shell nuclei. Iraqi J. Sci. 43(3) (2002) 1.
- W.D. Heiss, R.G. Nazmitdinov, S. Radu. Regular and chaotic motion in axially deformed nuclei. Phys. Rev. C 52(6) (1995) 3032.

- 8. K.A. Gado. Quadupole moments calculation of deformed even-even<sup>156-170</sup>Er isotopes. Global Journal of Management and Business Research G 14(1) (2014).
- 9. G. Neyens. Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei. Rep. Prog. Phys. 66 (2003) 633.
- S. Mohammadi. Quadrupole Moments Calculation of Deformed Nuclei. Journal of Physics: Conference Series 381 (2012) 012129.
- L. Coraggio et al. Shell-model calculations and realistic effective interactions. Prog. in Part. and Nucl. Physics 62 (2009) 135.
- 12. N. Tsunoda et al. Multi-shell effective interactions. Phys. Rev. C 89 (2014) 024313.
- 13. S.B. Doma et al. The Deformation Structure of the Even-Even p- and s-d Shell Nuclei. Alexandria J. of Phys. 1 (2011) 11.
- 14. N. Jarallah. Quadrupole moment and deformation parameter for even-even  $_{38}$ Sr (A = 76 102) nuclide. Energy Procedia 157 (2019) 276.
- 15. F.A. Majeed. Shell Model Calculations of Some Nuclei Near <sup>208</sup>Pb Region. J. of Phys. Studies 21(3) (2017) 3201.
- 16. F. Ertugrala, E. Guliyev, A.A. Kuliev. Quadrupole Moments and Deformation Parameters of the <sup>166-180</sup>Hf, <sup>180-186</sup>W and <sup>152-168</sup>Sm Isotopes. Acta Phys. Polonica A 128(2B) (2015) 254.
- 17. M.O. Waheed, F.I. Sharrad. Description of the deformation properties of even-even <sup>102-106</sup>Pd isotopes. Ukr. J. Phys. 62(9) (2017) 757.
- 18. B.A. Brown, W.D. Rae. Nucl. Data Sheets 120 (2014) 115.
- J.F.A. Van Hienen, W. Chung, B.H. Wildenthal. Shell-Model Calculations for the Zinc Isotopes. Nucl. Phys. A 269 (1976) 159.
- 20. J.E. Koops, P.W.M. Glaudemans. Shell-Model Calculations on Ni and Cu Isotopes. Z. Physik A 280 (1977) 181.
- 21. A.L. Nichols, B. Singh, J.K. Tuli. Nuclear Data Sheets for A = 62. Nucl. Data Sheets 113(4) (2012) 973.
- 22. B. Singh. Nuclear Data Sheets for A = 64. Nucl. Data Sheets 108(2) (2007) 197.
- 23. E. Browne, J.K. Tuli. Nuclear Data Sheets for A = 66. Nucl. Data Sheets 111(4) (2010) 1093.
- 24. E.A. McCutchan. Nuclear Data Sheets for A = 68. Nucl. Data Sheets 113(6-7) (2012) 1735.
- 25. B. Pritychenko et al. Tables of E2 transition probabilities from the first 2<sup>+</sup> states in even-even nuclei. Atomic Data and Nucl. Data Tables 107 (2016) 1.
- 26. S. Raman, C.W. Nestor, Jr., P. Tikkanen. Transition probability from the ground to the first-excited 2<sup>+</sup> state of even-even nuclides. Atomic Data and Nucl. Data Tables 78 (2001) 1.

Надійшла/Received 30.10.2020