![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Interaction potential between two axially symmetric nuclei
V. Yu. Denisov, N. A. Pilipenko
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: The simple approach for the evaluation of the interaction potential between two deformed axial-symmetric nuclei is proposed. The potential energy of deformed arbitrary-oriented nuclei is discussed in detail. Properties of entrance-channel potential for fusion reactions 22Ne + 248Cm and 26Mg + 248Cm leading to super-heavy elements are considered.
References:1. Beckerman M. Sub-barrier fusion of two nuclei. Rep. Prog. Phys. 51 (1988) 1047; https://doi.org/10.1088/0034-4885/51/8/001
Dasgupta M., Hinde D. J., Rowley N., Stefanini A. M. Measuring barriers to fusion. Annual Rev. Nucl. Part. Sci. 48 (1998) 401; https://doi.org/10.1146/annurev.nucl.48.1.401
Balantekin A. B., Takigawa N. Quantum tunneling in nuclear fusion. Rev. Mod. Phys. 70 (1998) 77; https://doi.org/10.1103/RevModPhys.70.77
Canto L. F., Gomes P. R. S., Donangelo R., Hussein M. S. Fusion and breakup of weakly bound nuclei. Phys. Rep. 424 (2006) 1. https://doi.org/10.1016/j.physrep.2005.10.006
2. Satchler G. R. Direct Nuclear Reactions (Oxford: Clarendon Press, 1983) 833 p.
3. Bass R. Nuclear Reactions with Heavy Ions (Berlin: Springer-Verlag, 1980) 410 p.
4. Wong C. Y. Interaction Barrier in Charged-Particle Nuclear Reactions. Phys. Rev. Lett. 31 (1973) 766. https://doi.org/10.1103/PhysRevLett.31.766
5. Fernandez-Niello J. O., Dasso C. H., Landowne S. Comp. Phys. Commun. 54 (1989) 409. https://doi.org/10.1016/0010-4655(89)90100-8
6. Dasso C. H., Fernandez-Niello J., Landowne S. Low-energy reactions with heavy deformed nuclei. Phys. Rev. C 41 (1990) 1014. https://doi.org/10.1103/PhysRevC.41.1014
7. Rumin T., Hagino K., Takigawa N. Effects of β6 deformation and low-lying vibrational on heavy-ion fusion reactions at sub-barrier energies. Phys. Rev. C 61 (2000) 014605. https://doi.org/10.1103/PhysRevC.61.014605
8. Denisov V. Yu., Ikezoe H. α-nucleus potential for α-decay and sub-barrier fusion. Phys. Rev. C 72 (2005) 064613. https://doi.org/10.1103/PhysRevC.72.064613
9. Hofmann H., Munzenberg G. The discovery of the heaviest elements. Rev. Mod. Phys. 72 (2000) 733; https://doi.org/10.1103/RevModPhys.72.733
Armbruster P. Ann. Rev. Nucl. Part. Sci. 50 (2000) 411. https://doi.org/10.1146/annurev.nucl.50.1.411
10. Turler A. Gas Phase Chemistry of Superheavy Elements. J. Nucl. Radiochem. Sci. 5 (2004) R19. https://doi.org/10.14494/jnrs2000.5.R19
11. Krappe H. J., Nix J. R., Sierk A. J. Phys. Rev. C 20 (1979) 992; https://doi.org/10.1103/PhysRevC.20.992
Möller P., Iwamoto A. Nucl. Phys. A 575 (1994) 381; https://doi.org/10.1016/0375-9474(94)90197-X
Ichikawa T., Iwamoto A., Möller P., Sierk A. J. Phys. Rev. C 71 (2005) 044608. https://doi.org/10.1103/PhysRevC.71.044608
12. Denisov V. Yu. Interaction potential between heavy ions. Phys. Lett. B 526 (2002) 315. https://doi.org/10.1016/S0370-2693(01)01513-1
13. Denisov V. Yu., Norenberg W. Eur. Phys. J. A 15 (2002) 375; https://doi.org/10.1140/epja/i2002-10039-3
Denisov V. Yu. Eur. Phys. J. A 25 (2005) 619. https://doi.org/10.1140/epjad/i2005-06-106-1
14. Denisov V. Yu. AIP Conf. Proc. 704 (2004) 92; https://doi.org/10.1063/1.1737100
Superheavy element production, nucleus-nucleus potential and μ-catalysis. arXiv:nucl-th/0310019;
Entrance-channel potentials in the synthesis of the heaviest nuclei. Muon catalysis of superheavy elements formation. Proc. "Symposium on Nuclear Clusters: from Light Exotic to Superheavy Nuclei", Rauischholzhausen Castle (near Marburg), Germany. Eds. R. Jolos, W. Scheid (EP Systema, Debrecen, Hungary, 2004) p. 433.
15. Newton J. O., Butt R. D., Dasgupta M. et al. Systematic failure of the Woods-Saxon nuclear potential to describe both fusion and elastic scattering: Possible need for a new dynamical approach to fusion. Phys. Rev. C 70 (2004) 024605. https://doi.org/10.1103/PhysRevC.70.024605
16. Blocki J., Randrup J., Swiatecki W. J., Tsang C. F. Proximity forces. Ann. Phys. 105 (1977) 427. https://doi.org/10.1016/0003-4916(77)90249-4
17. Baltz A. J., Bayman B. F. Proximity potential for heavy ion reactions on deformed nuclei. Phys. Rev. C 26 (1982) 1969; https://doi.org/10.1103/PhysRevC.26.1969
Bayman B. F. Form factors for a proximity interaction between deformed nuclei. Phys. Rev. C 34 (1986) 1346. https://doi.org/10.1103/PhysRevC.34.1346
18. Seiwert M., Greiner W., Oberacker V., Rhoades-Brown M. J. Test of the proximity theorem for deformed nuclei. Phys. Rev. C 29 (1984) 477. https://doi.org/10.1103/PhysRevC.29.477
19. Varshalovich D. A., Moskalev A. N., Khersonskii V. K. Quantum Theory of Angular Momentum (Moscow: Nauka, 1975) 443 p.
20. Moller P., Nix J. R., Myers W. D., Swiatecki W. J. Nuclear Ground-State Masses and Deformations. At. Data Nucl. Data Tables 59 (1995) 185. https://doi.org/10.1006/adnd.1995.1002
21. Mitsuoka S., Ikezoe H., Nishio K., Lu J. Phys. Rev. C 62 (2000) 054603. https://doi.org/10.1103/PhysRevC.62.054603
22. Raman S., Nestor C. W., Tikkanen P. At. Data Nucl. Data Tables 78 (2001) 1. https://doi.org/10.1006/adnd.2001.0858
23. Lazarev Yu. A., Lobanov Yu. A., Oganessian Yu. Ts. et al. Phys. Rev. Lett. 73 (1994) 624; https://doi.org/10.1103/PhysRevLett.73.624
Turler A., Dressler R., Eichler B. et al. Phys. Rev. C 57 (1998) 1648. https://doi.org/10.1103/PhysRevC.57.1648
24. Turler A., Dullmann Ch. E., Gaggeler H. W. et al. Eur. Phys. J. A 17 (2003) 505. https://doi.org/10.1140/epja/i2002-10163-0
25. Audi G., O. Bersillon O., Blachot J., Wapstra A. H. Nucl. Phys. A 729 (2003) 3. https://doi.org/10.1016/j.nuclphysa.2003.11.001