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We propose a new approach, based on the evolutionary algorithm, which enables to extract a scattering matrix S(I)
as a complex function of angular momentum | directly from the nucleus-nucleus elastic scattering data at intermediate
energies without any additional model assumptions implied. Due to the automatic monitoring of the scattering matrix
derivatives, the obtained S-matrix for '°O - '°O-scattering at 350 MeV is determined by the modulus and nuclear phase,
which are smooth monotonic functions of angular momentum. We show the independence of the final S - matrix shapes
of the primary model representations chosen to be the commonly used phenomenological ones.

1. Introduction

S-operator is a fundamental quantity of the
scattering theory, which incorporates, by a general
assumption, all possible information on any possible
scattering process (including particle creation or
destruction). In the case of elastic scattering, the
diagonal matrix elements of S-operator in the
angular momentum representation can be given in
general form as

(1) =n(hexp(2ip(), (1)

where the S-matrix modulus 7(l)and the scattering
phase ¢(l) are real, smooth functions of |. The

unitarity of the S-matrix for the composite particle-
nucleus scattering in the presence of nuclear
absorption requires that 77(l) <1, so we put

n(h) =exp(-25,(1)), 2)

where the nuclear absorption phase J,(l) must be a

real, smooth, positive function of |.
Since the colliding nuclei have electric charges,
then the scattering phase ¢(l) can be divided into

two parts
p(h=6,N+ac(), €)

where the nuclear refraction phase o,(I) and the
Coulomb scattering phase o.(l) must be real,

smooth functions of I.

From a general physics viewpoint, the only
restrictions we may impose on the nuclear phases
6, () to be determined are their finite values at small

I, total vanishing at sufficiently large | and smooth
behavior in the intermediate region. The most natural
and simple approximation for &,(I)(orn(l)) and
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o.(l) is
ascending to unity) function that can be easily modeled
with the help of, say, Fermi-step or Gauss functions.
For the case of elastic heavy-ion scattering at
intermediate energies (E > >20 MeV/nucleon), the S-
matrix approaches of such a kind (see, e.g., [1 - 3]) and
the optical potential models that yield S(l) with such a

a monotonically descending (forz(l),

behavior (see, e.g., [4, 5]) have appeared to be quite
successful and argued for the so-called ,yrainbow”
interpretation of the data. However, these models have
not allowed an adequate description of all the features
of the data measured.

The substantial improvement in the quality of fit
is achieved with the help of more flexible S(I)

forms, which allow the phases to behave
nonmonotonically for all relevant I. Such a
nonmonotonic behavior is provided by extension of
the standard (monotonic) S-matrices with the series
of the pole-like terms (see, e.g., [6]) or the proper
(say, spline) basis functions (see, e.g., [7, 8]).
Similar behavior is inherent in the S-matrices
calculated from the optical potentials that have the
additional derivative-like interior terms or have the
more complicated forms obtained by use of the
spline functions or the Fourier - Bessel series (see,
e.g., [5, 9, 10]). In spite of the excellence of the
quality of fit provided in such approaches, the
rainbow interpretation of the data appears to be no
longer valid, which raises the problem of finding the
physical meaning of the results obtained this way.
Clearly, all the approaches just mentioned are more or
less model-dependent because the functions used to
model the phases &, (1) and the real and imaginary parts

of optical potential V(r) and W(r) are more or less the
properly parameterized analytical ones. Thus, the search
spaces of all possible shapes for the S-matrix and the
optical potential are strongly reduced, and consequently
data analyses performed on such spaces can lead to an
incorrect physical interpretation of the data.
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That is why it would be highly desirable to have
the procedure that could extract the scattering matrix
and/or the optical potential directly from the
experimental data, without the introduction of any
bias towards some a priori ,,physically reasonable”
model assumptions. The very first question this
procedure must answer to is whether the
nonmonotonic (e.g. pole-like) structures and any
other distortions, which appear in the S-matrix
shapes obtained in the most successful approaches,
are really necessary to reproduce the experimental
data studied. This will help us to shed more light on
the applicability of the rainbow interpretation to the
heavy-ion collisions in the wide range of energies
and mass numbers.

2. Model-independent determination of the
scattering matrix

To develop the desired procedure which
determines S(l) directly from the data, we need to

solve the problem in its most explicit form, in which
each value of &, (l) is treated generally as an

independent fitting parameter. This makes the
problem parameter space highly dimensional and the
choice of an appropriate search method crucial.
Evolutionary (or genetic) algorithms (EAs) have
many times proved very efficient in dealing with
very difficult physical problems (see, e.g., [11, 12]),
so we have chosen EA as a key element of our
procedure.

According to the general ideology of the EA
implementation, we deal with the population of N
individuals. Each individual is the S-matrix
presented as the pair of the real-valued | -

dimensional vectors [0,(1),5,(D ], 1=0,1, ..., | _ -
1. The fitness of each individual reflects the quality
of data fitting provided by the individual's S-matrix.
By using the mutation operation the algorithm
evolves the initial population of the badly fitted
individuals to the final population of the highly
fitted ones.

Every iteration of our procedure contains the
following steps:

1. Generating the initial population of N

individuals. For each individual the vectors &, (I)

are filled with the help of any monotonically
descending function of |, the first derivative of
which has only one minimum. To be definite and to
test the robustness of the procedure against various
starting conditions, we choose the following three
primary models for S(I).

1). The six-parameter model composed of two
Fermi functions

26, =g, f(L1,d),
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f(I,Ii,di):|:1+exp[|;—|iH Ji=ar. 4

2). The four-parameter model composed of two
Gaussian functions

|2
26,(h=9; exp(—(?} O]
3). The five-parameter Mclntyre model [1]
77(') =f (_Ia_la’da)a
26,(h=g,f(1.d,). (6)

The parameters g;, | and d, are positive. They

are chosen for each individual and each model
function at random within some intervals that are
wide enough to produce substantially different
shapes of the phases. Normally, all the individuals in
a given population are initialized with one and the
same function from the set (4) - (6). All the
mentioned primary models for S(I) are ,,physically
justified”.

2. Evaluating the fitness of each individual in the
population. The fitness function in our approach
consists of two parts. The first one is associated with

the quality of the shapes of 6a,r(|), and the second
one accounts for the quality of the fitting of the
experimental data.

The requirements that the shapes of ¢, ,(I) must

meet in our approach are as follows:
i). The functions &, (I) must be descending.

ii). The first derivatives of &,  (I) must have only

one minimum and no maxima.
iii). The second derivatives of o, () must not

have more than one minimum and one maximum.

iv). The third derivative of &, (I) must not have
more than one minimum and one maximum.

v). The logarithmic derivative of J,(l) must be
descending.

The requirements i) - iii) ensure the absence of any
distortions of the phase shapes, at least up to the
second-order derivatives. The condition iv) is added
because we want the deflection function
O()=2de(l)/dl to have no shape distortions up to
the same order of its derivatives. The condition v)
provides for the permanent decrease of J,(l) with the
increase of |. The requirements i) - iv) are crucial for
the shapes of 9, (). Thus the penalties imposed on

the individual in the case of violation of these
requirements are fatal. The condition v) is not so

SIAEPHA ®I3MKA TA EHEPT'ETHUKA Ne4(22) 2007



MODEL-INDEPENDENT DESCRIPTION

strong and introduces only the ultimate bias towards
the desired tail of Sy (l).

The quality of the fit of the calculated differential
cross section to the experimentally measured one is

assessed by means of the standard »° magnitude per

data point. The calculations are made by using the
expansion of the scattering amplitude into a series of
Legendre polynomials. The elastic scattering
differential cross section is equal to the squared
modulus of this amplitude.

It is often claimed that the amount of the large
scattering angle data is insufficient to determine the
scattering matrix and/or the optical potential in a
unique way. Thus, we add several additional pseudo
data points after the last actual ones, which follow
the tendency of the cross section behavior (see, e.g.,
[8]). Of course, this prescription cannot be universal
and must be used with care in the context of the data
under study. The incorporation of the invented data
points to the y”criterion can appear misleading for

the fitting procedure; therefore, we use the penalty-
free corridor around those points and apply the
prescription only after the fitting to the actual data
set has been accomplished.

3. Letting each individual in the population
produce M offsprings. The replication is performed
according to the transformation

log[5; (N]=1og[ 5, (1+ AN, (0, DD(L 1, ;.d,, ), (7)

s and &)
offspring's S-matrix phases, respectively, i = a, T,
A > 0 is the mutation amplitude, N,(0,1) denotes a
normally  distributed one-dimensional random
number with mean zero and one standard deviation,
l,,; stands for the mutation point chosen randomly in

the interval 0< I ; <l -1, d ; > 0 is the value

= mii —Imax
characterizing the diffuseness of the mutation
region. The diffusing function D(l,l;,d ;) must be
of the bell-like shape with the only maximum at | =
= |,; and the fall-off tail around this point.
To be definite and to ensure the proper

localization of the consequences of the mutation we
choose the diffusing function in the form

D(I,Im,i,dm,i)=exp{—('_d#} ®)

where are the parent's and

The mutation amplitude A and the mutation
diffuseness d_; are the quantities automatically

tuned within some intervals. The limits of these
intervals, having the extremely large values at the
beginning of the procedure, are smoothly decreased
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in the course of the run and acquire small values at
the end. Such a schedule provides for both the
removal of the features of the primary
parameterizations (4) - (6) from the individual's
S(I) and the fine tuning of the details of S(I).

4. Evaluating the fitness values of all offsprings.
Sort the offsprings in descending order according to
their fitnesses. Select N best offsprings to form the
new population.

5. Going to step 3 or stopping if the best fitness
in the population is sufficiently high (the y* value

is small enough).

EAs make up, generally, the global optimization
technique that, however, cannot guarantee that the
optimum found is the global one. Therefore, it is
necessary to run the procedure several times.
Besides, there is no way to know in advance what
the minimum value of the »° magnitude will be.

Thus, it is instructive to monitor the dynamics of the
best, worst and mean fitness values and the rms
deviation from the mean fitness in the population
during those several runs of the procedure. Such
monitoring usually helps to localize the region of the

potentially lowest x> values.

3. Scattering matrix for elastic
160 - '*Q-scattering at 350 MeV

We applied our technique to analyze the well-known
test case of the elastic '°0O - '*O-scattering at 350 MeV,
for which the approaches that give a very good quality
of fit predict the existence of the nonmonotonic
structures in the S-matrix (see, e.g., [6, 7]).

In our calculations, bearing in mind that the
collision energy is sufficiently high, we let o (l) in

(3) to be the quasiclassical phase of the point-charge
scattering by the uniformly charged sphere (see, e.g.,
[2]) having the radius Rg= 0.95 - 2 - 16" [13]. The

calculated elastic scattering differential cross
sections were symmetrized for the scattering of
identical nuclei. The experimental errors were
assumed to be equally weighted (10 % error bars).

Figs. 1-3 show the results of our calculations
with the primary models (4) - (6) for S(I),
respectively. The y° values for our fits to the data
under consideration are 2.4 - 2.5. For each initial case,
the results of five different runs of the procedure are
presented to display the error bands within each of the
primary S(I) models. Fig.4 compiles three best
results from Figs. 1 - 3 to illuminate their sensitivity
to the details of the particular primary S(I) model.
Fig. 5 demonstrates the consequences of the
consideration of the invented data points in the region
of large scattering angles.

83



84

V.YU. KORDA, A.S. MOLEV, L.P. KORDA

0.8

0.4

30

r

25, rad

0

0 0 100 o 50 100
Fig. 1. Five scattering matrices for the elastic '°O - '®O-scattering at 350 MeV, calculated by our procedure with the
primary model (4) for S(I). a — the S-matrix moduli 7(l). The inset shows the region of small momenta in the
logarithmic scale; b — nuclear phases &, (1) . The inset shows the region of small momenta in the enlarged scale; ¢ — the
same as b but in the logarithmic scale; d — deflection functions @(l). The inset shows the vicinity of @(I) minima in
the enlarged scale. Solid curves correspond to the best quality of fit to the data = 2.4.
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Fig. 2. The same as Fig. 1, but with primary model (5) for S(l).
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Fig. 4. Three best results from Figs. 1 - 3. Notation is the same as in Fig. 1.
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Fig. 5. Two scattering matrices and differential cross sections for the elastic '°O - '°O-scattering at 350 MeV, calculated
by our procedure with primary model (5) for S(I) . Solid (dashed) curves are the results of calculations with the invented

data points taken (not taken) into account in the region of large scattering angles. a and b — scattering matrix moduli
n7(l) and nuclear phases J,(l) in the region of small momenta, respectively; ¢ — the phases J,(l) in the region of large

momenta; d — deflection functions @(l) in the vicinity of the minima; e — the differential cross sections (ratio to the

Rutherford cross section). Experimental data are taken from [14, 15]. Solid curves presenting S(l) correspond to the

same ones shown in Fig. 2.
4. Discussion

The evolutionary procedure of determining the
scattering matrix directly from the available
experimental data on nucleus-nucleus elastic
scattering cross sections at intermediate energies,
presented in this article, is aimed at searching for the
globally optimal solution. But, being aware of the
complexity of the problem under study and the fact
that the actual number of fitting parameters (twice
the number of angular momenta, which is | , = 120

in our test case) is substantially greater than the
actual number of data points (which is equal to 105
in our test case), we do not expect to achieve it.
Therefore, we consider the obtained results (Figs. 1 -
5) as very promising.

First of all, we see that within every model
representation used for the primary S(I)

86

dependence, regardless of the variety of their shapes,
the moduli 7(l) and the nuclear refraction phases

o,(l), as well as the total deflection functions ©(1),

obtained in different runs of the developed
procedure, go close to each other (Figs. 1 - 3). The
differences between them can sometimes be seen
only in the enlarged or even logarithmic scale. The
same observation can be made if one analyzes the
compilation of the best results (Fig. 4), which points
out their independence of the initial conditions.

At the same time, the nuclear phases J,(l)
deviate from each other in the region of large
angular momenta. There the scattering matrix
module 7(l)are very close to unity, which makes
the contributions of the partial waves with these
values of | to the scattering amplitude vanishingly
small. Nevertheless, we are able to conclude that,
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under the requirements i) — v) imposed on the phases
0, (1), we have managed to localize the region of

the scattering matrix shapes that gives the lowest
values to the x> magnitude. It is somewhat

surprising that the incorporation of the additional
pseudo data points in the fitness function, which
really forces the differential cross section to behave
as desired, produces no noticeable corrections to the
scattering matrix (Fig. 5) in the whole range of |.
This is against the conventional way of thinking, but
could be just a feature of that particular data set
under study.

From the physics viewpoint, our results support
the rainbow interpretation of the given data: the
nuclear rainbow angle that corresponds to the
minimum of the deflection function @(l) acquires

=61- 64°. If, from the very

beginning, we abandon all requirements i) — V)
imposed on the shapes of &, (I), then the procedure

the values 6 =

becomes able to find the results with y*= 0.5 - 0.6.
But the S-matrices for these cases are nonmonotonic

and substantially different from run to run,
belonging to different local optima.

5. Conclusion

The evolutionary procedure under description has
been devised to determine the scattering matrix in
the angular momentum representation. The similar
approach can be used to develop the evolutionary
procedure for the determination of radial
dependence of a complex optical potential. With the
help of this procedure, the optical potential can be
extracted directly from the experimental data.
Moreover, with the use of the similar procedure, the
scattering matrix produced by the optical potential
can be fitted to the scattering matrix extracted
directly from the data. This means that the optical
potential found in this way will correspond to the
scattering matrix extracted immediately from the
data. Having unified these three search procedures
into one, we obtain a powerful tool for the deep
theoretical investigation of heavy-ion collisions at
intermediate energies.
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MOJIEJIbHO-HE3AJIEXKHUIM OITUC IPYXXHOI'O PO3CISSHHS
JIETKUX SIJIEP SIIPAMHM B OBJACTI IIPOMIJKHUX EHEPITA

B. IO. Kopaa, O. C. MoJes, JI. I1. Kopaa

Ha ocHOBi eBOJIIOIIHOrO aJTOpPUTMY PO3BMHYTO HOBHH IiJXiA, i3 3aCTOCYBaHHSM SKOTO MOXHA 3700yBaTH
Matpuiro poscisHasa S(I) sk KoMIUIekcHy (GyHKLit0 opOiTaibHOro MOMEHTY | Ge3nocepeHpO 3 eKCHepUMEHTAIbHUX
JAHUX 13 TPYXKHOTO SIPO-SIEPHOTO PO3CISHHS NPH IPOMDKHHX EHeprisix Oe3 3aiaydeHHs I0JaTKOBHX MOJEIbHUX
TPUITyIIeHb. 3aBIAKH aBTOMATHYHOMY KOHTpOIo moseinkn noxiguux S(I) 3106yTa matpuis '°0 - '°O-poscisuus npu
e”eprii 350 MeB Bu3HauaeTbcss MOIyIeM i siepHOIO (ha3010, SIKi € ITAaBHUMA MOHOTOHHUMH (DYHKIISIMH OpOIiTaIhHOTO
MomeHTy. JloBeneno, mo kinmea gopma S(l) He 3a1eXkuTh BiI MOYATKOBHX 300paXkeHb MAaTPHIN PO3CISHHSA, 33 SKi
oOupanrcs 3BU9aifHO 3aCTOCOBYBaH1 ()eHOMEHOIIOTIYHI MOJIET.

MOJIEJIbHO-HE3ABUCUMOE OIIMCAHUE YIIPYTOI'O PACCESIHUSI
JETKUX SAJEP SIIPAMHU B OBJIACTH INPOMEXYTOYHBIX SHEPI'MU

B. 10. Kopaa, A. C. Mouaes, JI. I1. Kopaa

Ha ocHOBe 3BOJIOLIMOHHOTO aJTOPUTMA Pa3BUT HOBBIM IOJIXOJ, C HCIIOJIb30BAHHEM KOTOPOTO MOXKHO H3BJIEKATH
marpuiy paccesHuss  S(l) Kak  KOMIUIEKCHYIO (QYHKIHIO OpOHMTAaIbHOTO MOMeHTa | HemocpencTBeHHO 3
IKCIIEPUMEHTAJBHBIX JaHHBIX 10 YIPYIOMY SAPO-SICPHOMY PACCESHUIO IPH TNPOMEXKYTOYHBIX OJHEprusx 06e3
NPHUBJICYCHHS JOMOJHUTENBHBIX MOJIEIBHBIX MpPEeNNoNoKeHni. biaromapss aBTOMaTHYecKOMY KOHTPONIO IOBEICHHS
npousoaueix S(I) momyuennas marpuna '°0 - '®O-paccesmus npu smeprum 350 MbB onpenensercss MOAyleM H
A0epHON (a3o, SBISAIOIIMMHUCS IUIABHBIMM MOHOTOHHBIMH (YHKLUHMAMH OpOUTanbHOro MoMeHTa. IlokazaHo, 4TO
koHeuHass ¢opma S(l) He 3aBHCHT OT HAYaIBHBIX IMPEACTABICHHWI MATPHUIBI PACCESHHS, B KadeCTBE KOTOPBIX
BBIOMPAJICh OOBIYHO HCIOJIb3yeMble ()eHOMEHOJIOTHUECKHE MOJIEIIH.
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