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We propose a new approach, based on the evolutionary algorithm, which enables to extract a scattering matrix S(l) 

as a complex function of angular momentum l directly from the nucleus-nucleus elastic scattering data at intermediate 
energies without any additional model assumptions implied. Due to the automatic monitoring of the scattering matrix 
derivatives, the obtained S-matrix for 16О - 16О-scattering at 350 MeV is determined by the modulus and nuclear phase, 
which are smooth monotonic functions of angular momentum. We show the independence of the final S - matrix shapes 
of the primary model representations chosen to be the commonly used phenomenological ones. 
 

1. Introduction 
 

S-operator is a fundamental quantity of the 
scattering theory, which incorporates, by a general 
assumption, all possible information on any possible 
scattering process (including particle creation or 
destruction). In the case of elastic scattering, the 
diagonal matrix elements of S-operator in the 
angular momentum representation can be given in 
general form as 

 

( )( ) ( )exp 2 ( )S l l i lη ϕ= ,               (1) 
 

where the S-matrix modulus ( )lη and the scattering 
phase ( )lϕ  are real, smooth functions of l. The 
unitarity of the S-matrix for the composite particle-
nucleus scattering in the presence of nuclear 
absorption requires that ( )lη  ≤ 1, so we put  

 

( )( ) exp 2 ( )al lη δ= − ,                   (2) 
 

where the nuclear absorption phase ( )a lδ must be a 
real, smooth, positive function of l. 

Since the colliding nuclei have electric charges, 
then the scattering phase ( )lϕ  can be divided into 
two parts  

 
( ) ( ) ( )r Cl l lϕ δ σ= + ,                    (3) 

 
where the nuclear refraction phase ( )r lδ  and the 
Coulomb scattering phase ( )C lσ  must be real, 
smooth functions of l. 

From a general physics viewpoint, the only 
restrictions we may impose on the nuclear phases 

, ( )a r lδ  to be determined are their finite values at small 
l, total vanishing at sufficiently large l and smooth 
behavior in the intermediate region. The most natural 
and simple approximation for ( )a lδ (or )(lη ) and 

( )r lδ  is a monotonically descending (for ( )lη , 
ascending to unity) function that can be easily modeled 
with the help of, say, Fermi-step or Gauss functions. 
For the case of elastic heavy-ion scattering at 
intermediate energies (E ≥ ≥ 20 MeV/nucleon), the S-
matrix approaches of such a kind (see, e.g., [1 - 3]) and 
the optical potential models that yield ( )S l with such a 
behavior (see, e.g., [4, 5]) have appeared to be quite 
successful and argued for the so-called „rainbow” 
interpretation of the data. However, these models have 
not allowed an adequate description of all the features 
of the data measured. 

The substantial improvement in the quality of fit 
is achieved with the help of more flexible ( )S l  
forms, which allow the phases to behave 
nonmonotonically for all relevant l. Such a 
nonmonotonic behavior is provided by extension of 
the standard (monotonic) S-matrices with the series 
of the pole-like terms (see, e.g., [6]) or the proper 
(say, spline) basis functions (see, e.g., [7, 8]). 
Similar behavior is inherent in the S-matrices 
calculated from the optical potentials that have the 
additional derivative-like interior terms or have the 
more complicated forms obtained by use of the 
spline functions or the Fourier - Bessel series (see, 
e.g., [5, 9, 10]). In spite of the excellence of the 
quality of fit provided in such approaches, the 
rainbow interpretation of the data appears to be no 
longer valid, which raises the problem of finding the 
physical meaning of the results obtained this way. 

Clearly, all the approaches just mentioned are more or 
less model-dependent because the functions used to 
model the phases , ( )a r lδ and the real and imaginary parts 
of optical potential V(r) and W(r) are more or less the 
properly parameterized analytical ones. Thus, the search 
spaces of all possible shapes for the S-matrix and the 
optical potential are strongly reduced, and consequently 
data analyses performed on such spaces can lead to an 
incorrect physical interpretation of the data. 
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That is why it would be highly desirable to have 
the procedure that could extract the scattering matrix 
and/or the optical potential directly from the 
experimental data, without the introduction of any 
bias towards some a priori „physically reasonable” 
model assumptions. The very first question this 
procedure must answer to is whether the 
nonmonotonic (e.g. pole-like) structures and any 
other distortions, which appear in the S-matrix 
shapes obtained in the most successful approaches, 
are really necessary to reproduce the experimental 
data studied. This will help us to shed more light on 
the applicability of the rainbow interpretation to the 
heavy-ion collisions in the wide range of energies 
and mass numbers. 

 

2. Model-independent determination of the 
scattering matrix 

 

To develop the desired procedure which 
determines ( )S l directly from the data, we need to 
solve the problem in its most explicit form, in which 
each value of , ( )a r lδ  is treated generally as an 
independent fitting parameter. This makes the 
problem parameter space highly dimensional and the 
choice of an appropriate search method crucial. 
Evolutionary (or genetic) algorithms (EAs) have 
many times proved very efficient in dealing with 
very difficult physical problems (see, e.g., [11, 12]), 
so we have chosen EA as a key element of our 
procedure. 

According to the general ideology of the EA 
implementation, we deal with the population of N 
individuals. Each individual is the S-matrix 
presented as the pair of the real-valued maxl -
dimensional vectors [ ( )a lδ , ( )r lδ ], l = 0, 1, ..., maxl -
1. The fitness of each individual reflects the quality 
of data fitting provided by the individual's S-matrix. 
By using the mutation operation the algorithm 
evolves the initial population of the badly fitted 
individuals to the final population of the highly 
fitted ones. 

Every iteration of our procedure contains the 
following steps: 

1. Generating the initial population of N 
individuals. For each individual the vectors , ( )a r lδ  
are filled with the help of any monotonically 
descending function of l, the first derivative of 
which has only one minimum. To be definite and to 
test the robustness of the procedure against various 
starting conditions, we choose the following three 
primary models for ( )S l . 

1). The six-parameter model composed of two 
Fermi functions  

 

2 ( ) ( , , ),i i i il g f l l dδ =  

1

( , , ) 1 exp , ,i
i i

i

l lf l l d i a r
d

−
⎡ ⎤⎛ ⎞−

= + =⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

.     (4) 

 
2). The four-parameter model composed of two 

Gaussian functions  
 

2

22 ( ) exp .i i
i

ll g
d

δ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

                    (5) 

 
3). The five-parameter McIntyre model [1]  
 

( ) ( , , ),a al f l l dη = − −  
 

2 ( ) ( , , ).r r r rl g f l l dδ =                  (6) 
 

The parameters ig , il  and id are positive. They 
are chosen for each individual and each model 
function at random within some intervals that are 
wide enough to produce substantially different 
shapes of the phases. Normally, all the individuals in 
a given population are initialized with one and the 
same function from the set (4) - (6). All the 
mentioned primary models for ( )S l  are „physically 
justified”. 

2. Evaluating the fitness of each individual in the 
population. The fitness function in our approach 
consists of two parts. The first one is associated with 
the quality of the shapes of , ( )a r lδ , and the second 
one accounts for the quality of the fitting of the 
experimental data. 

The requirements that the shapes of , ( )a r lδ  must 
meet in our approach are as follows: 

i). The functions , ( )a r lδ  must be descending. 
ii). The first derivatives of , ( )a r lδ  must have only 

one minimum and no maxima. 
iii). The second derivatives of , ( )a r lδ  must not 

have more than one minimum and one maximum. 
iv). The third derivative of ( )r lδ  must not have 

more than one minimum and one maximum. 
v). The logarithmic derivative of ( )r lδ  must be 

descending. 
The requirements i) - iii) ensure the absence of any 

distortions of the phase shapes, at least up to the 
second-order derivatives. The condition iv) is added 
because we want the deflection function 

( ) 2 ( ) /l d l dlΘ ϕ=  to have no shape distortions up to 
the same order of its derivatives. The condition v) 
provides for the permanent decrease of ( )r lδ  with the 
increase of l. The requirements i) - iv) are crucial for 
the shapes of , ( )a r lδ . Thus the penalties imposed on 
the individual in the case of violation of these 
requirements are fatal. The condition v) is not so 
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strong and introduces only the ultimate bias towards 
the desired tail of ( )r lδ . 

The quality of the fit of the calculated differential 
cross section to the experimentally measured one is 
assessed by means of the standard 2χ  magnitude per 
data point. The calculations are made by using the 
expansion of the scattering amplitude into a series of 
Legendre polynomials. The elastic scattering 
differential cross section is equal to the squared 
modulus of this amplitude. 

It is often claimed that the amount of the large 
scattering angle data is insufficient to determine the 
scattering matrix and/or the optical potential in a 
unique way. Thus, we add several additional pseudo 
data points after the last actual ones, which follow 
the tendency of the cross section behavior (see, e.g., 
[8]). Of course, this prescription cannot be universal 
and must be used with care in the context of the data 
under study. The incorporation of the invented data 
points to the 2χ criterion can appear misleading for 
the fitting procedure; therefore, we use the penalty-
free corridor around those points and apply the 
prescription only after the fitting to the actual data 
set has been accomplished. 

3. Letting each individual in the population 
produce M offsprings. The replication is performed 
according to the transformation  
 

'
, ,log[ ( )] log[ ( )] (0, 1) ( , , ),i i i i m i m il l A N D l l dδ δ= +  (7) 

 

where ( )i lδ  and ' ( )i lδ  are the parent's and 
offspring's S-matrix phases, respectively, i = a, r, 

iA > 0 is the mutation amplitude, (0,1)iN  denotes a 
normally distributed one-dimensional random 
number with mean zero and one standard deviation, 

,m il  stands for the mutation point chosen randomly in 
the interval 0 ≤ ,m il  ≤ maxl - 1, ,m id  > 0 is the value 
characterizing the diffuseness of the mutation 
region. The diffusing function , ,( , , )m i m iD l l d  must be 
of the bell-like shape with the only maximum at l = 
= ,m il  and the fall-off tail around this point. 

To be definite and to ensure the proper 
localization of the consequences of the mutation we 
choose the diffusing function in the form  

 

2
,

, , 2
,

( )
( , , ) exp m i

m i m i
m i

l l
D l l d

d
⎡ ⎤−

= −⎢ ⎥
⎢ ⎥⎣ ⎦

.             (8) 

 

The mutation amplitude iA and the mutation 
diffuseness ,m id  are the quantities automatically 
tuned within some intervals. The limits of these 
intervals, having the extremely large values at the 
beginning of the procedure, are smoothly decreased 

in the course of the run and acquire small values at 
the end. Such a schedule provides for both the 
removal of the features of the primary 
parameterizations (4) - (6) from the individual's 

( )S l and the fine tuning of the details of ( )S l . 
4. Evaluating the fitness values of all offsprings. 

Sort the offsprings in descending order according to 
their fitnesses. Select N best offsprings to form the 
new population. 

5. Going to step 3 or stopping if the best fitness 
in the population is sufficiently high (the 2χ  value 
is small enough). 

EAs make up, generally, the global optimization 
technique that, however, cannot guarantee that the 
optimum found is the global one. Therefore, it is 
necessary to run the procedure several times. 
Besides, there is no way to know in advance what 
the minimum value of the 2χ  magnitude will be. 
Thus, it is instructive to monitor the dynamics of the 
best, worst and mean fitness values and the rms 
deviation from the mean fitness in the population 
during those several runs of the procedure. Such 
monitoring usually helps to localize the region of the 
potentially lowest 2χ  values. 
 

3. Scattering matrix for elastic  
16O - 16O-scattering at 350 MeV 

 

We applied our technique to analyze the well-known 
test case of the elastic 16О - 16О-scattering at 350 MeV, 
for which the approaches that give a very good quality 
of fit predict the existence of the nonmonotonic 
structures in the S-matrix (see, e.g., [6, 7]). 

In our calculations, bearing in mind that the 
collision energy is sufficiently high, we let ( )C lσ  in 
(3) to be the quasiclassical phase of the point-charge 
scattering by the uniformly charged sphere (see, e.g., 
[2]) having the radius Rc = 0.95 ⋅ 2 ⋅ 161/3 [13]. The 
calculated elastic scattering differential cross 
sections were symmetrized for the scattering of 
identical nuclei. The experimental errors were 
assumed to be equally weighted (10 % error bars). 

Figs. 1 - 3 show the results of our calculations 
with the primary models (4) - (6) for ( )S l , 
respectively. The 2χ  values for our fits to the data 
under consideration are 2.4 - 2.5. For each initial case, 
the results of five different runs of the procedure are 
presented to display the error bands within each of the 
primary ( )S l  models. Fig. 4 compiles three best 
results from Figs. 1 - 3 to illuminate their sensitivity 
to the details of the particular primary ( )S l  model. 
Fig. 5 demonstrates the consequences of the 
consideration of the invented data points in the region 
of large scattering angles. 
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Fig. 1. Five scattering matrices for the elastic 16О - 16О-scattering at 350 MeV, calculated by our procedure with the 
primary model (4) for ( )S l . a – the S-matrix moduli ( )lη . The inset shows the region of small momenta in the 
logarithmic scale; b – nuclear phases ( )r lδ . The inset shows the region of small momenta in the enlarged scale; c – the 
same as b but in the logarithmic scale; d – deflection functions ( )lΘ . The inset shows the vicinity of ( )lΘ  minima in 
the enlarged scale. Solid curves correspond to the best quality of fit to the data 2χ = 2.4. 

0 50 100

0.4

0.8

3

1

 

 

 

2δ
r, 

ra
d

2δ
r, 

ra
d

l

η

l

Θ
, d

eg

0 50 100

-40

0

 

 

 

Θ
, d

eg

l
0 50 100

0

15

30

  

 

 

ca

2δ
r, 

ra
d

b d

0 50 100

10-5

10-1

 
 

 
l

20 30

-60

-50

  

 

 

l

0 15 30

 

 

 

 

l

η 
(1

0-3
)

l

0 5 10

36

39

 

  

 

 
Fig. 2. The same as Fig. 1, but with primary model (5) for ( )S l . 
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Fig. 3. The same as Fig. 1, but with primary model (6) for ( )S l . 
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Fig. 4. Three best results from Figs. 1 - 3. Notation is the same as in Fig. 1. 
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Fig. 5. Two scattering matrices and differential cross sections for the elastic 16О - 16О-scattering at 350 MeV, calculated 
by our procedure with primary model (5) for ( )S l . Solid (dashed) curves are the results of calculations with the invented 
data points taken (not taken) into account in the region of large scattering angles. a and b – scattering matrix moduli 

( )lη  and nuclear phases ( )r lδ  in the region of small momenta, respectively; c – the phases ( )r lδ  in the region of large 
momenta; d – deflection functions ( )lΘ  in the vicinity of the minima; e – the differential cross sections (ratio to the 
Rutherford cross section). Experimental data are taken from [14, 15]. Solid curves presenting ( )S l correspond to the 
same ones shown in Fig. 2. 
 

4. Discussion 
 

The evolutionary procedure of determining the 
scattering matrix directly from the available 
experimental data on nucleus-nucleus elastic 
scattering cross sections at intermediate energies, 
presented in this article, is aimed at searching for the 
globally optimal solution. But, being aware of the 
complexity of the problem under study and the fact 
that the actual number of fitting parameters (twice 
the number of angular momenta, which is maxl = 120 
in our test case) is substantially greater than the 
actual number of data points (which is equal to 105 
in our test case), we do not expect to achieve it. 
Therefore, we consider the obtained results (Figs. 1 - 
5) as very promising. 

First of all, we see that within every model 
representation used for the primary ( )S l  

dependence, regardless of the variety of their shapes, 
the moduli ( )lη  and the nuclear refraction phases 

( )r lδ , as well as the total deflection functions ( )lΘ , 
obtained in different runs of the developed 
procedure, go close to each other (Figs. 1 - 3). The 
differences between them can sometimes be seen 
only in the enlarged or even logarithmic scale. The 
same observation can be made if one analyzes the 
compilation of the best results (Fig. 4), which points 
out their independence of the initial conditions. 

At the same time, the nuclear phases ( )r lδ  
deviate from each other in the region of large 
angular momenta. There the scattering matrix 
module ( )lη are very close to unity, which makes 
the contributions of the partial waves with these 
values of l to the scattering amplitude vanishingly 
small. Nevertheless, we are able to conclude that, 
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under the requirements i) – v) imposed on the phases 
, ( )a r lδ , we have managed to localize the region of 

the scattering matrix shapes that gives the lowest 
values to the 2χ  magnitude. It is somewhat 
surprising that the incorporation of the additional 
pseudo data points in the fitness function, which 
really forces the differential cross section to behave 
as desired, produces no noticeable corrections to the 
scattering matrix (Fig. 5) in the whole range of l. 
This is against the conventional way of thinking, but 
could be just a feature of that particular data set 
under study. 

From the physics viewpoint, our results support 
the rainbow interpretation of the given data: the 
nuclear rainbow angle that corresponds to the 
minimum of the deflection function ( )lΘ  acquires 
the values rθ  = = 61 - 64°. If, from the very 
beginning, we abandon all requirements i) – v) 
imposed on the shapes of , ( )a r lδ , then the procedure 

becomes able to find the results with 2χ = 0.5 - 0.6. 
But the S-matrices for these cases are nonmonotonic 

and substantially different from run to run, 
belonging to different local optima.  

 
5. Conclusion 

 
The evolutionary procedure under description has 

been devised to determine the scattering matrix in 
the angular momentum representation. The similar 
approach can be used to develop the evolutionary 
procedure for the determination of radial 
dependence of a complex optical potential. With the 
help of this procedure, the optical potential can be 
extracted directly from the experimental data. 
Moreover, with the use of the similar procedure, the 
scattering matrix produced by the optical potential 
can be fitted to the scattering matrix extracted 
directly from the data. This means that the optical 
potential found in this way will correspond to the 
scattering matrix extracted immediately from the 
data. Having unified these three search procedures 
into one, we obtain a powerful tool for the deep 
theoretical investigation of heavy-ion collisions at 
intermediate energies. 
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МОДЕЛЬНО-НЕЗАЛЕЖНИЙ  ОПИС  ПРУЖНОГО  РОЗСІЯННЯ 
ЛЕГКИХ  ЯДЕР  ЯДРАМИ  В  ОБЛАСТІ  ПРОМІЖНИХ  ЕНЕРГІЙ  

 
В. Ю. Корда,  О. С. Молєв,  Л. П. Корда 

 
На основі еволюційного алгоритму розвинуто новий підхід, із застосуванням якого можна здобувати 

матрицю розсіяння S(l) як комплексну функцію орбітального моменту l безпосередньо з експериментальних 
даних із пружного ядро-ядерного розсіяння при проміжних енергіях без залучення додаткових модельних 
припущень. Завдяки автоматичному контролю поведінки похідних S(l) здобута матриця 16O - 16O-розсіяння при 
енергії 350 МеВ визначається модулем і ядерною фазою, які є плавними монотонними функціями орбітального 
моменту. Доведено, що кінцева форма S(l) не залежить від початкових зображень матриці розсіяння, за які 
обиралися звичайно застосовувані феноменологічні моделі. 

 
МОДЕЛЬНО-НЕЗАВИСИМОЕ  ОПИСАНИЕ  УПРУГОГО  РАССЕЯНИЯ 

ЛЕГКИХ  ЯДЕР  ЯДРАМИ  В  ОБЛАСТИ  ПРОМЕЖУТОЧНЫХ  ЭНЕРГИЙ 
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На основе эволюционного алгоритма развит новый подход, с использованием которого можно извлекать 

матрицу рассеяния S(l) как комплексную функцию орбитального момента l непосредственно из 
экспериментальных данных по упругому ядро-ядерному рассеянию при промежуточных энергиях без 
привлечения дополнительных модельных предположений. Благодаря автоматическому контролю поведения 
производных S(l) полученная матрица 16О - 16О-рассеяния при энергии 350 МэВ определяется модулем и 
ядерной фазой, являющимися плавными монотонными функциями орбитального момента. Показано, что 
конечная форма S(l) не зависит от начальных представлений матрицы рассеяния, в качестве которых 
выбирались обычно используемые феноменологические модели.  

 
Received 23.06.06, 
revised - 18.06.07. 


