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EFFECT OF SPECTRAL STATISTICS ON THE NUCLEAR DISSIPATION
V. M. Kolomietz, S.V. Radionov
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

We investigate the effect of quantum mechanical diffusion in the space of adiabatic states of intrinsic nucleonic
subsystem on the dissipative properties of macroscopic collective dynamics. By applying the cranking model approach to
the nuclear macroscopic dynamics, we derive the Newtonian-like equation of motion for a single collective variable,
where the dissipative character of the collective dynamics is due to both the Landau-Zener transitions and the Kubo
mechanism. A diffusion equation is used to determine the time evolution of the occupation probabilities of the nuclear
states. The transport characteristics are calculated for Gaussian orthogonal and unitary ensembles of the energy levels.
We discuss under what conditions a time-irreversible energy exchange between the collective and nucleonic degrees of

freedom is possible.

1. Introduction

The theoretical understanding of nuclear
dissipation as a consequence of the energy exchange
between the macroscopic collective and intrinsic
nucleonic degrees of freedom is far from complete.
On the quantum mechanical level, nuclear
dissipation is treated within linear response model
[1], dissipative diabatic dynamics model [2], Fermi-
liquid model [3], path integral method [4, 5], and
others.

As was proposed by Hill and Wheeler [6], the
microscopic origin for the nuclear dissipation is
transitions between the avoided crossings of
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Fig. 1. Typical dependence of the eigenenergies of the
nuclear many-body states on collective deformation
parameter.

The probability R (g,7)of the Landau - Zener

transition from the lower-lying initially occupied
level to the higher-lying unoccupied level is given
by

R“ (g,n)zexp[—%wj, (1)

where ¢ is the gap and 7 is the slope of the avoided

crossings of two nearest levels. One can see that
quantum statistics of nuclear eigenenergies, i.e., the
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adiabatic nuclear states. In Fig. 1, we show a typical
behaviour of the instantenious adiabatic energies of
the nuclear excited states as a function of collective
deformation parameter. The energy levels fluctuate
strongly with the collective deformation and the
feature of interest here is the large number of the
avoided crossings.

Deforming a nucleus slowly, the intrinsic
nucleonic subsystem is excited due to the transitions
from the lower-lying to higher-lying states at the
avoided crossings in the same way as in the standard
Landau-Zener picture [7, 8] illustrated in Fig. 2.
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Fig. 2. Typical picture of the avoided level crossing
considered in the Landau-Zener model [7, 8].

distribution of the slopes of nuclear levels and the
distances between them, may strongly affect on the
dissipative properties of the collective motion.

Besides the Landau - Zener transitions, there are
direct interlevel transitions which change the
occupancies of excited nuclear states. In fact,
dissipation of the collective energy arises as a result
of time-diffusion of the occupational probabilities of
the intrinsic nucleonic subsystem. How such
collective dissipation appears and what are the
necessary conditions for that are the main purpose of
the present work.
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2. Nuclear many-body system

We start by formulating the nuclear many-body

problem and writing the total many-body
Hamiltonian as
Hmt= LB@)d +U @)+ H,. (@), 2

where q(t) is a single collective time-dependent
variable, B(q) is the adiabatic mass parameter, U is

the collective potential energy and I:|int represents

the intrinsic nucleonic degrees of freedom. The
dynamics of the nucleonic subsystem is determined
in terms of the density matrix p,

0L ~[A,,@.5]. )

We introduce the moving basis functions
W (q) which satisfy the stationary Schrodinger
equation,

H,.. (@)%, (a)=E, (@)%, (). (4)

Using Zwanzig’s projection technique [9], one can
get the following equation for the diagonal elements
of the density matrix [10]

%:anm(t)[pnn(t)_pmm(t)] , (5)

where P, (t)is the transition rate

P (t)= 2R{T dt'D, (t)D,, (t —t")exp(it 'a)nm)} , (6)

with
Dnm(t)=<‘Pn ih2 ‘I’m>, (7
ot
and
o.,=(E,—E,)/h. ()

3. Diffusion of occupation probabilities

The transition rate (6) is obtained as a result of
second order perturbation theory in § . To avoid the

difficulty connecting with the divergence of the
cranking model parameter

o

levels, we assume that the density matrix varies with
time only due to the Landau - Zener transitions
between the adiabatic levels. We introduce the
averaged transition rate of the Landau - Zener

/@,,(q) for two neighboring

10

transitions <PLZ>, i.e., averaged over all possible

gap sizes ¢ and slopes 77 :

(P¥)=a[dp[deNmORZ (e), O

where N(7,¢)dnde is the number of avoided

crossings encountered per unit length with slopes in
the interval [7,7+d#n] and gap sizes in the interval

[¢,£ +de]. In the limit of small gap sizes & and
that the

/8q|‘Pm> are independently Gaussian

assuming matrix elements

(v

distributed, one can show that the distribution
N(n,&) is given by [11]

int

N(,&) =W(E)nP(&)P'(), (10)

where W(E) is the density of excited states. The
functions P(g) and P'(;7) are distribution functions

of gap sizes and slopes, respectively.

For special ensembles of levels, one can get
analytical expressions for these functions. Thus, for
systems with time-reversal invariance [Gaussian
orthogonal ensemble (GOE)]:

P(s)z%e-W(E),

P'(n) = exp( 87;2 ]

while for systems without time-reversal invariance
[Gaussian unitary ensemble (GUE)]:

(11)

(12)

25 ‘W2(E),

2
Ui Ui
exp| — .
yNETs p( 402}
As is shown in [10], we can reduce the master
equation (5) into the diffusion equation,

P(e)~ (13)

()=

(14)

op(E,t) _ 0 op(E.t)
WE— =g WEDE—— @15

where E is the continious energy variable
measuring the excitation of the nucleonic subsystem
and D(E) is the diffusion coefficient

D(E) = qW(E)IdggzP(g)_[dnnP(n)exp[ ||J 16)
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We calculated the diffusion coefficient (16)
separately for the GOE and GUE ensembles and
found that

GOE: D(E)mW(E)%o—“ﬂqru, (17)
GUE: D(E)ocW3(E)dVZI(EE)O'3|Q|3. (18)

We proceed by considering the process of
diffusion in the space of the intrinsic degrees of
freedom and introduce a new function F(E,t)

F(E,t)=W(E)p(E, 1), (19)
which has a meaning of the density of probability to

find the intrinsic nucleonic subsystem in the state
with an energy lying in the interval [E,E + dE].

We rewrite the diffusion equation (15) in terms
of the new distribution function F,

oF 0 0?
—=——r(E,t)F]+ D(E,t)F], 20
P aE[( )]8E2[( )F] (20)
with the drift coefficient
F(E.1) = dD(E,t) N D(E.,t) . dw (E) @

dE W (E) dE

The excitation of the nucleonic subsystem
implies that the distribution function F grows with
time. The necessary condition for that is the

positively defined the drift coefficient (21). We see

that there are two different contributions to the drift
r. The first one is caused by the growth of the
nuclear level-density with the excitation energy. In
view of Egs. (17) and (18), one can say that the
second contribution is due to possible energy
increase of the ensemble averaged off-diagonal
matrix elements

_ 2
_Tm> |

We are going to find an analytical solution to the
diffusion equation (20) by assuming that the drift
and diffusion coefficients varies slowly with the
energy E and putting them at E = E_, where E_ is

(22)

the Fermi energy. In that case, Eq. (20) corresponds
to a standard Brownian motion with time-dependent
drift and diffusion coefficients. One can get the
analytical expression for the distribution function
F , or for the density matrix p (see Eq. (19)),

[E-<E(t)>
24%(1)

pP(ED = j (23)

1 1
W(E) (224 (t) ”Xp(

where the excitation energy of the nucleonic
subsystem < E > reads

<E(t)>=<E(t=0)> +jr(EF,t')dt', (24)

and the variance A° is given by

t

A ()= A (t=0)+ 2j r(E,,t"dt' ] r(E.,t")dt"+ 2j D(E, ,t"dt'- {j r(E.,t"dt } . (25)

4. Coupled dynamics of the collective and
nucleonic subsystems

Now we turn to the consideration of time
evolution of the classical collective variable q. We

derive equation of motion for ( by requiring that

the total energy of the nuclear many-body system is
conserved with time,

0= (A) =B +U(@) +(A,,) = const . (26)

Differentiating over time both sides of the last
equation, we obtain

d I;iint
s -1 B0 @1 Fa) o,

2 aq a aq dt
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where the rate of change of the nucleonic
subsystem’s energy can be represented as

M:Tr(l—]imﬁ):fl +52.

” (28)

The first term in Eq. (28) gives the rate of change
of the adiabatic potential energy,

. ok
= =0 E _”O 29
=1 q - aq nn ( )

and it will be dropped in the sequel as far as we are
interested in the averaged dynamics of the collective
variable, i.e., averaged over all random realizations
of the slopes OE,/0q. The second term in (28)

11
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describes the time-irreversible change of the intrinsic
nucleonic energy and gives rise to dissipative effects
in the collective motion. It can be written as

SRL0)) j dsq(S) N, (£,5) P (5) (30)

where we introduced the memory kernel

N (t S) Z (S)< |agc;nt|\{;m>(t)x

><<‘I’m Tn>(s)|:exp(—ijdt'wmn}rc.c} .(3D)

We assume that the matrix elements in the
expression (31) fluctuate with time much weaker
than the frequencies @,,,and approximately write

that

oH

int

2cos(a@,, [t =0](t—s) |/‘I‘ |:|ml
@, (1=0)

et

To simplify the expression for the memory kernel
N, (t,s), we average it over all random realizations

N, (ts)~ )]

m#n

(t=0).

(32)

of off-diagonal matrix elements and level spacing:

N(ts)= 2TdeW(E + e)R(s)Tth(h)cos(e[t - s])h?i,
B h 33)

where s=W(E+e/2)e is the level
normalized to unit spacing, P(h) is the distribution

of the off-diagonal
h=(eH,, /q) ,

spacing

matrix elements

ol )

and R(S) is the level spacing distribution function;

P(h) =

(34)

see, for example Ref. [12]. The main contribution to
the integral in (33) gives the region of € where
R(s) =1 and therefore, we find

cos (e[t - S])
e

NE(t,s):ZTW(E+e)02(E,e) de. (39)

For the variance of the distribution of the off-

diagonal matrix elements o we use the result of
Ref. [13], where it is shown that it has a Gaussian
shape characterized by the spreading width 75 [14]

12

2
o’ (E,e)= exp (36)
% 22W(E) T, W(E)F [ 2r j
Here, o’ is the variance of the distribution of
energy slopes of nuclear mean-field. The spreading
width /7, is defined by strength of the residual
interaction between nucleons <V, >and is given by

Iy =272W <V, >. (37)

Since we consider the limit of highly excited
states of the nucleonic subsystem where e << E , one
can expand the level density in the integral (35) in
Taylor series and find that

J .(38)

1 dW(E)

exp| —
W(E) dE

Finally, we get the coupled dynamics of the

collective and the nucleonic subsystems:

10B(q) q - u(@)
2 0q aq

[t—sT’
[(h/ T

Ne(t,8) =20,

B(a)d =~

. 1 dW(E) |
207 G E & j [[h/r]]@)pE(s)ds
(39)

(E-< E(q[t])z)

Pe(3)= 24 [t])

(40)

1 1
W(E) 2z4°(4[t]) eXp(

5. Summary

Using Zwanzig’s projection technique, we
derived the master equation for the occupation
probabilities, p,,, of the energy levels in the moving

frame. We introduced then the Landau - Zener
transition rates, averaged over all possible gap sizes
¢ and slopes 7 of avoided level crossings. Due to

the use of the averaging procedure, we have reduced
the basic master equation for p,, to the diffusion

equation. Finally, we have established the coupled
equations of motion for the collective and nucleonic
subsystems. The main feature of the obtained
equation of motion for the collective variable is the
presence of the memory integral which gives rise to
both the dissipative effect and the additional time-
reversible force in the collective motion.

We have studied the structure of the memory
integral. Averaging the corresponding memory
kernel over all random realizations of the off-
diagonal matrix elements and the level spacing, we
have reduced significantly the memory integral. The
key element of its structure is the variance of the
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distribution of the off-diagonal matrix elements o>. moving frame [2, 6]. The result of Eq. (17) for the
GOE and Eq. (18) for the GUE statistics shows the

dependence of the memory term in Eq. (39) and

thereby the dissipation energy on the derivative

derived by the strength of the residual interaction dW (E)/dE of the level density. This means that the
between nucleons, see Eq. (36).

Our approach gives a consistent description of
nuclear large amplitude dynamics, including the
motion along a collective path and along the internal
excitation of the nucleus. The averaging over the
spectral statistics of avoided level crossings in the
moving frame allows us to extract the smeared
macroscopic transport parameters. In particular, the
memory integral and the diffusion coefficient can be
derived along the collective path. An essential
advantage of such a smearing procedure is the
elimination of the level quasi-crossing problem,
which occurs for the quantum cranking model in a

We show that o has the Gaussian shape and
depends on the spreading width 7/, which is

quantum diffusion within the energy level space and
the time irreversible exchange between the collective
and internal degrees of freedom is possible if the
phase space volume is increasing with the excitation
energy of the system. Using the structure of the
memory integral in Eq. (39), one can see that the
classical friction force which is proportional to the
collective velocity appears here in the case of the
GOE statistics for the motion close to the ground
state. For other cases the velocity dependence of the
friction force is much more complicated.
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BILIMB CIIEKTPAJIBHOI CTATUCTUKHU HA SIIEPHY JUCHITAIIIO
B. M. Koaowmieun, C. B. Pagionos

JlociimKyeThesl BIUIMB KBAaHTOBOT TUQY3ii y IpocTOpi afiabaTHYHUX PiBHIB BHYTPIIIHBOT HyKJIOHHOT IiJCHCTEMH Ha
NPOLIECH JAWCHIIALT TP MaKPOCKOIIIYHOMY KOJIEKTHBHOMY PYCi siipa. 3aCTOCOBYIOUM KPEHKIHT-MOJAENBHUN MiIXid 10
OINCY MaKpOCKOIIYHOI S1€pPHOI TUHAMIKH, OTPMMAaHO HBIOTOHIBCHKE PIBHSHHS PyXY UISl OJIHI€T KOJIEKTHUBHOI 3MIiHHOI,
B SIKOMY JWCHIIATUBHHUH XapaKTep KOJIEKTHMBHOTO pyXy oOyMoBIleHHH nepexonamu Jlannay - 3eHepa Ta MexaHi3MOM
mucunanii Ky6o. PiBusHHS nudysii 3acTocoByeTbes NMpH IbOMY JUIS BH3HA4YEHHs 4acoBOI €BOJIOLIi HMOBIpHOCTI
3aOBHEHHS SAEpHUX piBHIB. IIpm OOYNCICHHI TPAHCIOPTHUX KOG(IIiEHTIB BUKOPHUCTAHO TayCCIBCHKHUI
OpPTOTOHAIIEHUH Ta YHITapHUI aHCcaMOJIi piBHIB eHeprii sapa. JlociKyIOTECS TaKOXK YMOBH, 3a SKAX MOXKJIMBHIA 0OMiH
€Hepri€r0 MK KOJIEKTUBHIUMH Ta BHYTPIIIHIMHU CTYTICHSMH BOJI Spa.

BJIMSAHUE CHEKTPAJIBHOM CTATUCTHUKHU HA SIIEPHYIO TUCCHUIAIUIO
B. M. Kosiomuen, C. B. Paauonos

Uccnenyercsa BnusiHre KBaHTOBOH nu((y3un B MPOCTPAHCTBE aqnadaTHIECKUX YPOBHEH BHYTpEHHEH HYKIOHHOM
MOJICUCTEMBl Ha MPOLECCHl NUCCHNAIMK TPH MaKpPOCKOIMYECKOM KOJUIEKTHBHOM BO30ykaeHMH siapa. Mcmomib3ys
KPEHKUHT-MOJICNIBHBIM ITOJXOJ K OIMCAHHIO MAaKpPOCKOIIMYECKOH SIEepHON AWHAMUKH, ITOJYYEHO HBIOTOHOBCKOE
ypaBHEHHE IJIs1 OHON KOJUIEKTUBHOM NEPEMEHHOHN, B KOTOPOM JMCCUIIATUBHBIM XapaKTep KOJUICKTHBHOTO JBM)KEHHMS
oOycnosner nepexogamu Jlangay - 3eHepa U MexaHm3MoM auccunanuu Ky6o. YpaBuenue nud¢ys3un HCHOIb3yeTcs
IPU 3TOM I ONPENENICHUsS BPEMEHHOM 3BOJIIOIMU BEPOSITHOCTH 3allOJIHEHUsS SIAEPHBIX YpoBHEH. IIpu BhIUMCIeHNH
TPaHCIOPTHHIX KO3()(UIMEHTOB HCIIOJIB30BaHbl T'ayCCOBCKMH OpPTOTOHAJIBHBIH M YHHUTapHBIA aHcaMOiM YpOBHEU
sHepruu sijapa. VccnenyloTest TakKe YCIOBHS, ITPU KOTOPHIX BO3MOXKEH OOMEH SHEprueid MexIy KOJJIEKTUBHBIMU U
BHYTPEHHUMH CTENEHIMHU CBOOOMBI /Ipa.
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