ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Assessment of a polymeric composite as a radiation attenuator and a restoration mortar for cracking in biological shields
A. T. Gheith1, M. A. El-Sarraf2,*, I. E. Hasan1,3, N. L. Helal2, R. A. Rizk1, Amal A. El-Sawy2, A. El-Sayed Abdo4
1 Faculty of Science, Helwan University, Cairo, Egypt
2 Nuclear & Radiological Regulatory Authority, Cairo, Egypt
3 College of Science and Arts at Alnbhaniah, Qassim University, Saudi Arabia
4 Nuclear Research Centre, Atomic Energy Authority, Cairo, Egypt
*Corresponding author. E-mail address:
magdsarraf@yahoo.com
Abstract: This work is dedicated to figuring out robust epoxy/magnetite/boron carbide (EP/Mag/B4C) composite for radiation attenuation at multiple applications related to nuclear installations, as well as restoration mortar for cracking developed in concrete biological shields. The mechanical properties (flexural, compressive, and impact strengths) and the physical properties (water absorption, porosity, and dry bulk density), each, have been performed to label the composite integrity for practical application. In practice, attenuation properties have been performed by using a collimated beam emitted from spontaneous fission 252Cf (100 μg) neutron source and neutron gamma spectrometer with stilbene scintillator. The pulse shape discrimination technique which would come of the zero cross over method was used to measure the fast neutron and gamma-ray spectra. Thermal neutron fluxes have been measured by using the thermal neutron detection system and the BF-3 detector. The attenuation parameters: precisely, macroscopic effective removal cross-sections ΣR (cm-1), macroscopic cross-sections Σ (cm-1), and total attenuation coefficients μ (cm-1) of fast and thermal neutrons and total gamma-rays respectively were evaluated using the attenuation relations. Also, the MCNP5 code and MERCSF-N program have been used to compute the parameters theoretically. When applicable, measured and calculated results were compared, and it tells us a comprehensive agreement.
Keywords: biological shield, composite, neutron and gamma-ray spectra, attenuation parameters, MCNP code.
References:1. R.T.L. Allen, S.C. Edwards. The Repair of Concrete Structure (Glasgow: Blackie, 1987). Google book
2. P.K. Mukherjee, J.J. Deans. Service Performance of Nuclear Containment Concrete. Concrete International – Design & Construction 10(12) (1988) 75.
3. C.E. Acevedo, M.G. Serrato. Determining the Effects of Radiation on Aging Concrete Structures of Nuclear Reactors. Proc. WM2010 Conf. Phoenix, AZ, March 7 - 11, 2010, Paper 10243. http://archive.wmsym.org/2010/pdfs/10243.pdf
4. S. Granata, A. Montagnini. Studies on behavior of concretes under irradiation. In: Concrete for Nuclear Reactors. Vol. 2 of Special Publication SP-34 (American Concrete Institute, 1972) p. 1163. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/18109
5. M. Xanthos. Functional Fillers for Plastics. 2-nd ed. (New York: John Wiley & Sons, 2010). https://doi.org/10.1002/9783527629848
6. M.C.Y. Niu. Composite Airframe Structures: Practical Design Information and Data (Hong Kong: Conmilit Press Ltd, 1992).
7. D.-H. Kim. Composite Structures for Civil and Architectural Engineering (London, Glasgow, New York, Tokyo: E & FN Spon, 1995). Google book
8. H.S. Katz, J.V. Mileweski (ed.). Handbook of Fillers for Plastics (New York: Van Nostrand, Reinhold Co., 1987). Google book
9. I.I. Bashter, A. El-Sayed Abdo, M.S. Abdel-Azim. Magnetite ores with steel or basalt for concrete radiation shielding. Jpn. J. Appl. Phys. 36 (1997) 3692. https://doi.org/10.1143/JJAP.36.3692
10. A. El-Sayed Abdo, R.M. Megahid. Homogeneous and multilayered shields for neutrons and gamma rays. Jpn. J. Appl. Phys. 40 (2001) 2460. https://doi.org/10.1143/JJAP.40.2460
11. A.E. Profio. Radiation Shielding and Dosimetry (USA: Awidely-Interscience publication, a division of John Wiley and Sons, 1979). Google book
12. S. Glasstone, A. Sesonske. Nuclear Reactor Engineering. 3-rd ed. (Delhi, India: CBS Publishers & Distributors, 1986). Google book
13. M.A. El-Sarraf, A. El-Sayed Abdo. Insulating epoxy/barite and polyester/barite composites for radiation attenuation. Appl. Rad. Isot. 79 (2013) 18. https://doi.org/10.1016/j.apradiso.2013.04.026
14. M.A. El-Sarraf, A. El-Sayed Abdo. Influence of magnetite, ilmenite and boron carbide on radiation attenuation of polyester composites. Rad. Phys. Chem. 88 (2013) 21. https://doi.org/10.1016/j.radphyschem.2013.03.003
15. A. El-Sayed Abdo, M.A.M. Ali, M.R. Ismail. Influence of magnetite and boron carbide on radiation attenuation of cement-fiber/composite. Ann. Nucl. Energy 30(4) (2003) 391. https://doi.org/10.1016/S0306-4549(02)00074-9
16. H. Lee, K. Neville. Handbook of Epoxy Resins (New York: McGraw- Hill Book, 1987).
17. A. El-Sayed Abdo, M.A. El-Sarraf, F.A. Gaber. Utilization of ilmenite/epoxy composite for neutrons and gamma rays attenuation. Ann. Nucl. Energy 30(2) (2003) 175. https://doi.org/10.1016/S0306-4549(02)00052-X
18. ASTM. Standard Test Method for Compressive Properties of Rigid Plastics. ASTM Designation 695 (1991). https://www.astm.org/Standards/D695.htm
19. ASTM. Standard Test Methods for Flexural Properties of Un-Reinforced and Reinforced Plastics and Electrical Materials. ASTM Designation 790 (1990). https://www.astm.org/Standards/D790.htm
20. ASTM. Standard Test Methods for Impact Resistance of Plastics and Electrical Insulating Materials. ASTM Designation 256 (1990).
21. ASTM. Standard Test Method for Water Absorption of Plastics. ASTM Designation 570-81 (1981). https://www.astm.org/Standards/D570.htm
22. ASTM. Standard Test Method for Dry and Wet Bulk Density, Water Absorption, and Apparent Porosity of Thin Sections of Glass–Fibre Reinforced Concrete. ASTM Designation C 948 - 81 (1981). https://www.astm.org/Standards/C948.htm
23. R.A. Winyard, J.E. Lutkin, G.W. McBeth. Pulse shape discrimination in inorganic and organic scintillators. Nucl. Instrum. Meth. 95(1) (1971) 141. https://doi.org/10.1016/0029-554X(71)90054-1
24. T.G. Miller. Measurement of pulse shape discrimination parameters for several scintillators. Nucl. Instrum. Meth. 63(1) (1968) 121. https://doi.org/10.1016/0029-554X(68)90314-5
25. I.I. Bashter, A.S. Makarious, A. El-Sayed Abdo. Investigation of hematite-serpentine and ilmenite limonite concretes for reactor radiation shielding. Ann. Nucl. Energy 23(1) (1996) 65. https://doi.org/10.1016/0306-4549(95)00011-G
26. M.E. Toms. A computer analysis to obtain neutron spectra from an organic scintillator. Nucl. Instrum. Meth. 92(1) (1971) 61. https://doi.org/10.1016/0029-554X(71)90223-0
27. Yu.I. Kolevatov, V.I. Kukhtevich, I.V. Goryachev. Scintillation gamma spectrometry with stilbene crystal. Voprosy Dozimetrii i Zashchity ot Izlucheniya 10 (1969) 131. (Rus)
28. A. El-Sayed Abdo, M.A.M. Ali, M.R. Ismail. Natural fibre high-density polyethylene and lead oxide composites for radiation shielding. Rad. Phys. Chem. 66(3) (2003) 185. https://doi.org/10.1016/S0969-806X(02)00470-X
29. G.F. Knoll. Radiation Detection and Measurement. 4-th ed. (New York: John Wiley & Sons, 2010). Book
30. X-5 Monte Carlo Team. MCNP – A general Monte Carlo Code for Neutron and Photon Transport. Version 5 (Los Alamos National Laboratory, USA, 2005). https://mcnp.lanl.gov/
31. A.M. El-Khayatt, A. El-Sayed Abdo. MERCSF-N: A program for the calculation of fast neutron removal cross sections in composite shields. Ann. Nucl. Energy 36(6) (2009) 832. https://doi.org/10.1016/j.anucene.2009.01.013