ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Estimation of status of small rodents’ natural populations from the transformed ecosystems of the Chornobyl exclusion zone according to the complex of biological indicators
A. I. Lypska1,*, N. K. Rodionova1, N. M. Riabchenko1, O. O. Burdo1, D. O. Vyshnevskiy2, H. Ishiniwa3
1 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 Chornobyl Radiation and Ecological Biosphere Reserve, Chornobyl, Ukraine
3 Fukushima University, Fukushima, Japan
*Corresponding author. E-mail address:
lypska@kinr.kiev.ua
Abstract: Morphophysiological and hematological parameters of different species and ontogenesis types of mice rodents from the drained areas of the Chornobyl cooling pond were studied for the first time; comparative analysis, including data of control and stable populations of the Chornobyl exclusion zone, was performed. Radioecological characterization of the research sites was carried out; the contents of the main dose-forming radionuclides were determined; animals’ exposure doses were estimated. In all experimental groups, similar changes in the hematopoietic system were observed, however, pathological features were less pronounced in individuals from the drained areas of the cooling pond. It was revealed that in the animal body under the chronic low dose exposure activation of compensatory and recovery processes occurs along with the destructive processes. It has been shown that the lifetime increase in radiation exposure of mature animals causes the imbalance of bone marrow hematopoiesis with the gradual exhaustion of blood system potential.
Keywords: Chornobyl exclusion zone, rodents, radionuclides, blood system, morphophysiological indicators, onthogenetic approach.
References:1. V.P. Protsak, O.O. Odintsov. Assessment of forms finding of Chernobyl radionuclides in bottom sediments of cooling pond of the ChNPP. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 15(3) (2014) 259. (Ukr) https://jnpae.kinr.kyiv.ua/15.3/Articles_PDF/jnpae-2014-15-0259-Protsak.pdf
2. ICRP Publication 108. Environmental Protection – the Concept and Use of Reference Animals and Plants. Ann. ICRP 38 (2008) 4. https://journals.sagepub.com/toc/anib/38/4-6
3. S.P. Gashchak et al. Features of the species composition of insectivores (Insectivora) and rodents (Rodentia) of the Chornobyl exclusion zone. Vestnik Zoologii 34 (2000) 51. (Rus)
4. E. B. Grigorkina et al. Small mammals in the zone of the East-Ural radioactive trace: 50 years later. Voprosy Radiatsionnoy Bezopasnosti. Special Issue: The East-Ural radioactive trace is 50 years old (2007) 68. (Rus)
5. D.Z. Shibkova, A.V. Akleev. Adaptive-Compensatory Reactions of the Hematopoietic System under Chronic Radiation Exposure (Chelyabinsk: Publishing House of Chelyabinsk State Pedagogical University, 2006) 328 p. (Rus)
6. A.G. Kudyasheva et al. Monitoring of wild rodents population inhabiting areas with increased radiation background. Problemy Bezpeky Atomnykh Elektrostantsiy i Chornobylya (Problems of Nuclear Power Plants’ Safety and of Chornobyl) 3(2) (2005) 119. (Rus) http://www.ispnpp.kiev.ua/wp-content/uploads/2017/2005_032/c119.pdf
7. K.I. Maslova et al. Atlas of Pathomorphological Changes in Root Voles from Hotspots of Local Radioactive Contamination (Moskva: Nauka, 1994) 187 p. (Rus)
8. E.A. Gilev. Ecological and Genetic Monitoring with the Help of Rodents (Ural experience) (Yekaterinburg: Publishing House of Ural University, 1996) 106 p. (Rus)
9. G.V. Olenev. Determination of the age of cyclomorphic rodents, functional and ontogenetic determination, ecological aspects. Ekologiya 40 (2009) 93. (Rus)
10. O.S. Monastyrska. Clinical Laboratory Studies. Ed. by M.B. Shegedyn (Vinnytsia: Nova Knyga, 2007) 165 p. (Ukr)
11. L.Kh. Garkavi, E.B. Kvakina, M.A. Ukolova. Adaptive Reactions and Body Resistance. 2-nd ed., add. (Rostov-na-Donu: Publishing House of Rostov University, 1990) 224 p. (Rus)
12. M.L. Turgeon. Clinical Hematology: Theory and Procedures. 5-th ed. (Philadelphia: Lippincott Williams & Wilkins, 2011) 632 p. Google book
13. R.E. Raskin, K.S. Latimer, H. Tvedten. Small Animal Clinical Diagnosis by Laboratory Methods. Leukocyte Disorders (2004) 63. https://doi.org/10.1016/B0-72-168903-5/50008-2
14. Yu.A. Marlyuk et al. Values and structure of dose burdens in small mammals of the Chernobyl zone in 19 years after the accident. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 3(21) (2007) 81. (Rus) https://jnpae.kinr.kyiv.ua/21(3)/Articles_PDF/jnpae-2007-3(21)-0081-Maklyuk.pdf
15. A.I. Ilyenko, P.T. Krapivko. Ecology of Animals in Radiation Biogeocenosis (Moskva: Nauka, 1989) 224 p. (Rus)
16. G.V. Olenev. Functional Ontogenetic Approach to the Study of Populations of Cyclomorphic Mammals. Thesis abstract of doctor of Biological Sciences (Ekaterinburg, 2004) 47 p. (Rus)
17. E.B. Grigorkina, G.V. Olenev. Role of Polyalternativeness of Animals’ Ontogeny Development in the Estimation of Ionizing Radiation Consequences. Radiatsionnaya Biologiya. Radioekologiya 55(1) (2015) 16. (Rus) https://ipae.uran.ru/sites/default/files/publications/Olenev_GV/Olenev_55.pdf
18. S.S. Shvarts, V.S. Smirnov, L.N. Dobrinskiy. Method of Morphophysiological Indicators in the Ecology of Terrestrial Vertebrates (Sverdlovsk, 1968) 378 p. (Rus)
19. N.K. Rodionova et al. Influence of radiation conditions of the Chernobyl Exclusion Zone on the hematopoietic system of bank vole. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 20(1) (2019) 44. (Ukr) https://doi.org/10.15407/jnpae2019.01.044