ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
PADC response to 0.3 - 3 MeV protons
I. Traoré 1,*, A. Bâ 1, A. Nourreddine2
1 Laboratory of Optics, Spectroscopy and Atmospheric Sciences, Faculty of Sciences and Techniques, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
2 The Hubert Curien Pluridisciplinary Institute, University of Strasbourg, Strasbourg, France
*Corresponding author. E-mail address:
amenotra@lossa-mali-edu.org
Abstract: Two types of Poly-Allyl-Diglycol Carbonate, the Neutrak and PN3 were investigated using track diameter distribution induced by the monoenergetic protons with energies in the range of 0.3 to 3 MeV. The energies and intensities were controlled by a silicon surface barrier detector and a nickel scattered foil placed in a 4 MV Van der Graaf accelerator. After different etching times, the etch track-sizes were scanned and measured with the optical microscope. PN3 and Neutrak track diameter responses to protons were measured, plotted, and discussed as a function of energy.
Keywords: track diameter, Poly-Allyl-Diglycol Carbonate, monoenergetic protons, etched track.
References:1. R.L. Fleischer, P.B. Price, R.M. Walker. Nuclear Tracks in Solids: Principles and Applications (Berkeley: University of California Press, 1975). Google books
2. B.G. Cartwright, E.K. Shirk, P.B. Price. A nuclear-track-recording polymer of unique sensitivity and resolution. Nucl. Instr. and Meth. 153 (1978) 457. https://doi.org/10.1016/0029-554X(78)90989-8
3. S.A. Durrani. Nuclear tracks: A success story of the 20th century. Radiat. Meas. 34 (2001) 5. https://doi.org/10.1016/S1350-4487(01)00112-3
4. K. Oda et al. Dose-equivalent response CR-39 track detector for personnel neutron dosimetry. Nucl. Instr. and Meth. B 61 (1991) 302. https://doi.org/10.1016/0168-583X(91)95634-P
5. Fazal ur-Rehman et al. Assessment of fast and thermal neutron ambient dose equivalents around the KFUPM neutron source storage area using nuclear track detectors. Radiat. Meas. 40 (2005) 595. https://doi.org/10.1016/j.radmeas.2005.04.022
6. H. Zaki-Dizaji, M. Shahriari, G.R. Etaati. Calculation of CR-39 efficiency for fast neutrons using the MCNP and SRIM codes. Radiat. Meas. 43 (2008) S283. https://doi.org/10.1016/j.radmeas.2008.04.082
7. M.R. Deevband et al. Sensitivity Study of PADC Track Detector with External Radiators. Journal of Applied Science 10(23) (2010) 3127. https://doi.org/10.3923/jas.2010.3127.3131
8. A. Belafrites et al. Response of PN3 dosimeters to 239Pu-Be neutrons. Radiat. Meas. 39 (2005) 241. https://doi.org/10.1016/j.radmeas.2004.07.003
9. E. Vilela et al. Optimization of CR-39 for fast neutron dosimetry applications. Radiat. Meas. 31 (1999) 437. https://doi.org/10.1016/S1350-4487(99)00141-9
10. R. Mishra et al. A better understanding of the background of CR-39 detectors. Radiat. Meas. 40 (2005) 325. https://doi.org/10.1016/j.radmeas.2004.11.010
11. J.C.H. Miles, K.G. Harrison. Results of measurements using Landauer neutrak-144 neutron dosimeters. Nuclear Tracks 5(4) (1981) 375. https://doi.org/10.1016/0191-278X(81)90332-2
12. M. Matiullah et al. Some investigations on the response of CR-39 detector to protons, deuterons and alpha particles. Nucl. Tracks Radiat. Meas. 15 (1988) 137. https://doi.org/10.1016/1359-0189(88)90116-1
13. Shi-Lun Guo, Bao-Liu Chen, S.A. Durrani. Solid-state Nuclear Track Detectors. In: Handbook of Radioactivity Analysis. 3-rd ed. Ed. by M.F. L’Annunziata (2012) p. 233. https://doi.org/10.1016/B978-0-12-384873-4.00004-9
14. H.A. Khan et al. Tracks-registration-and-development characteristics of CR-39 plastic track detector. Nucl. Tracks 7 (1983) 129. https://doi.org/10.1016/0735-245X(83)90007-8
15. A. Malinowska et al. Investigations of protons passing through the CR-39/PM-355 type of solid-state nuclear track detectors. Review of Scientific Instruments 84 (2013) 073511. https://doi.org/10.1063/1.4815833
16. L. Bernardi et al. Studies of the response of CR-39 track detectors to protons from a 3 MeV Van de Graaff accelerator. Nucl. Instr. and Meth. B 53 (1991) 61. https://doi.org/10.1016/0168-583X(91)95445-J
17. B. Dorschel et al. Proton detection properties of CR 39 made in GDR. Nucl. Tracks Radiat. Meas. 19 (1991) 155. https://doi.org/10.1016/1359-0189(91)90163-C
18. M. Fromm et al. Proton and alpha track profiles in CR-39 during etching and their implications on track etching models. Nucl. Tracks Radiat. Meas. 19 (1991) 163. https://doi.org/10.1016/1359-0189(91)90165-E
19. M. Sadowski et al. Comparison of responses of CR 39, PM-355 and CN track detectors to energetic hydrogen, helium, nitrogen and oxygen ions. Radiat. Meas. 28 (1997) 207. https://doi.org/10.1016/S1350-4487(97)00069-3
20. Z. Lounis et al. Track etch parameters in CR-39 detectors for proton and alpha particles of different energies. Nucl. Instr. and Meth. B 179 (2001) 543. https://doi.org/10.1016/S0168-583X(01)00601-2
21. D. Xiaojiao et al. Calibration of CR-39 with monoenergetic protons. Nucl. Instr. and Meth. A 609 (2009) 190. https://doi.org/10.1016/j.nima.2009.08.061