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MONTE CARLO-BASED ANALYSIS OF THE PHOTON BEAM FLUENCE
WITH AIR GAP THICKNESS BETWEEN LINAC HEAD EXIT WINDOW
AND PATIENT’S SKIN IN RADIOTHERAPY TREATMENTS

Linear accelerators (Linac) are used in radiation therapy treatment and its technology improvement ensures high do-
simetry quality that should be conserved for high radiotherapy efficiency. However, does the air gap between the exit
window of Linac head and patient’s skin alters the physical properties of the photon beam? The objective of this study is
to assess the physical properties changes of photon beam fluence according to air gap thickness under the Linac head.
The air gap under the Linac head is the last material in the photon beam path; it induces alterations in the beam quality
before reaching the patient’s skin. The Varian Clinac 2100 head and the air gap up to the phantom surface are modelled
using Monte Carlo BEAMNnrc code; the nominal beam energy is 6 MV. The BEAMDP code is used to extract the photon
fluence. The photon beam fluence is affected by the air gap under Linac head and decreases by six times due to the photon
beam attenuation with air gap thickness; in addition to increasing of beam contamination by scattered photons and elec-
trons. Thus, the air gap induces the beam quality deterioration which is evaluated in terms of photon fluence with air gap
thickness. To remove the particles contaminations and conserve integrally the photon beam quality, the number of the
photon interactions with air atoms should be as low as possible under Linac head up to patient’s skin and ensure a higher

quality of the radiotherapy treatment of deep tumour.
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1. Introduction

At the entrance of the target volume, during the
radiotherapy treatment of cancer, the photon beam
composition is very crucial for the treatment quality.
The photon beam should be homogenous in energy
and particles type: photons only or electrons only. At
the phantom surface, in addition to primary photons,
the beam contains the electron contamination, the
positron contamination and the scattered photons (of
low energy) [1]. These particles deteriorate the
dosimetry quality and subsequently have negative
effects on the radiotherapy treatment quality [2].

The air gap is the last material in the photon beam
path before reaching the patient’s skin. Under linear
accelerator (Linac) head, the air gap can alter the de-
livered dose by photons interaction with air atoms [3].
The specific features of the air gap effects on the
physical properties of the photon beam depend on the
air atoms number (pressure) between Linac head and
patient’s skin [4]. Therefore, it is important to deter-
mine the changes in these properties of the beam with
air gap thickness and its effects on the dosimetry qual-
ity and subsequently on the radiotherapy treatment
quality. The air gap effects on the beam are assessed
by the photon interactions with air atoms that will be
more negative if the particles contamination number
is higher and their energy is lower [5].

The knowledge of characterizations of clinical
beams is essential for dosimetry and development of
accurate dose calculation algorithms in the clinical
treatment planning systems (TPS) and thereafter for
the overall technology development of Linac. The
Monte Carlo simulation is a technique that provides a
detailed energetic investigation as the spectral distri-
bution and the beam fluence and a detailed dosimetric
calculation as the percentage depth dose (PDD) out-
put of Linac head [6]. These methods have been used
extensively in medical physics for studying radiation
therapy [7, 8]. They can be used to obtain information
about the characterizations of the beam by analysing
the dose distribution, the output factors and the beam
energy [9].

The dosimetry quality management is recom-
mended by many international institutions to survey
instantaneously the external beam radiotherapy treat-
ment [10, 11]. Beam quality is directly related to
Linac head performance for producing the clinical
beams to ensure a higher radiotherapy efficiency [12].
The beam quality study aims to improve the techno-
logy of the Linac head and its performance to produce
the clinical beam of high quality in cancer treatment
[13, 14].
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In this study, we investigate the effects of the air
gap on the beam quality in terms of photon fluence at
different points in the beam path using the Monte
Carlo method, which is used to simulate the Linac
head and the air gap. The dosimetry quality analysis
focuses on the photon beam characterizations at water
phantom surface for checking in radiotherapy quality
in terms of the photon fluence at the entrance of the
target volume of cancer.

2. Materials and methods
2.1. Monte Carlo simulation

In this study, the air gap is the last material slab
that is traversed by the photon beam. It is localized
between the Linac head and the water phantom sur-
face (Fig. 1). In the Monte Carlo simulation, the air
gap is subdivided into eight sub-slabs of the thickness
of 7.5 cm.

Fig. 1. Picture shows the Linac head, the water
tank, and the air gap between them.

The geometry data of Varian Clinac 2100 model
was supplied by the manufacturer (Varian Medical
Systems, Palo Alto, CA). The 6 MV photon beam
produced by the Linac is modelled using the
BEAMnrc (Version 2013) simulation software. The
irradiation field size is 10 x 10 cm? and the source to
surface distance (SSD) is 100 cm. All parts of the
Linac head including the target, primary collimator
and flattening filter, monitor ion chamber, mirror, and
X-Y jaws (secondary collimators) are modelled using
modules provided by the code. The air gap also is an
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integral part of the Monte Carlo model of the Linac
head; it is symmetrical around the central beam axis
and simulated as a material slab.

The global cut-off energy for electron and photon
particles are set to 0.7 MeV and 0.01 MeV, respec-
tively. To increase the number of photons generated
in the target, Directional Bremsstrahlung Splitting
(DBS) is used as a variance reduction technique and
it is 1000.

Fig. 2 shows the built Monte Carlo geometry of
the head of Varian Clinac 2100 by BEAMnrc code
and the air gap under the head for a field size of
10 x 10 cm?,

Fig. 2. Monte Carlo geometry of Varian Clinac 2100 in
XZ plan generated by BEAMNrc and the air gap (yellow
colour) under the Linac head. (See color Figure on the
journal website.)

The histories number used in BEAMnrc is 2-107.
This number is sufficient to generate a dose statistical
uncertainty of 1 % and is as determined in other pre-
vious studies [15]. By the step of 7.5 cm, the scoring
plan for phase-space files (PSF) is moved toward wa-
ter phantom. Thereafter, the photon fluence is deter-
mined for sub-slab of the air gap of the thickness of
7.5, 15, 22.5, 30, 37.5, 45, 52.5 and 60 cm.

2.2. Monte Carlo simulation validation

One way to validate the Monte Carlo simulation
of the Linac head is to evaluate the dosimetry of the
clinical photon beam in terms of percentage depth
dose (PDD) curves and dose profiles curves. By com-
parison of calculated dose distributions with experi-
mentally measured dose distributions, the Monte
Carlo simulation is validated using the gamma index
method [16]. The gamma index criterion is 3 % for
dose deviation and 3 mm for distance to the agree-
ment. The gamma index values which are < 1 define
the agreement between measured and calculated dose
distributions along with the depth for PDD and the
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off-axis for dose profile in the water phantom. There-
after, the gamma index acceptance rate is determined
to evaluate the agreement between both compared
dose distributions [17]. The measurements of dose
were performed using PTW equipment [18].

3. Results and discussion

The gamma index rate is determined for PDD and
dose profiles for Varian Clinac 2100 and it is com-
pared to the tolerance limit recommended by Interna-
tional Atomic Energy Agency (IAEA) in Technical
Report Series (TRS) No. 430 and in Technical Docu-
ments (TECDOC) No. 1540 [19, 20]. The Monte
Carlo simulation validation of Varian Clinac 2100 is

a subject of one of our previous scientific publications
[21]. It is more accurate by approximately 99 % for
PDD and dose profile in comparison with previous
studies [22]. The primary electron source above the
target is monoenergetic with the energy of 6.52 MeV,
the radial spread is Gaussian with the full width at half
maximum (FWHM) of 1.4 mm, and the mean angle
spread is 1 °.

Using the BEAMDP code, the photon beam fluence
is extracted based on phase space files (PSF) generated
by BEAMnrc code [23]. Fig. 3 shows the photon flu-
ence profiles as a function of off-axis distance for each
sub-slab of the air gap with different thicknesses from
0 to 60 cm by the increment of 7.5 cm.
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Fig. 3. Photon fluence profiles with the thickness of the air gap as a function of off-axis distance.

We notice from Fig. 3, the photon beam fluence
decreases according to the thickness of the air gap and
the maximum fluence moves toward the increasing
off-axis distance. Fig. 4 gives the off-axis distance
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Fig. 4. Off-axis of the maximum of the photon fluence as a function of air gap thickness (a), the maximum of the
photon fluence and the theoretical estimation as a function of off-axis distance (b).
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The off-axis of the maximum of the beam fluence
varies linearly with air gap thickness and it is natural
due to beam edge limited by the flatness of the inner
surface of jaws (see Fig. 4, a). For evaluating the va-
riation of the maximum of the beam fluence at the
beam edge, Fig. 4, b gives the variation of the maxi-
mum of the beam fluence with off-axis distance. The
maximum of the beam fluence decreases with off-axis
distance but this decreasing is not in a linear manner.

At the beam edge, for assessing the impacts of the
air gap on the photon beam fluence, we have pro-
ceeded to estimate theoretically the maximum varia-
tion of the beam fluence with off-axis distance.
Therefore, the maximum of the beam fluence should
vary with off-axis distance in a linear manner because
the inner surface of jaws is flat and it limits the photon
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beam to travel in the straight line.

We have evaluated two theoretical estimations: in-
ternal estimation and external estimation. The internal
estimation gives the information about the nearest
variation line to the central beam axis and the external
estimation gives the information about the farthest
variation line of the maximum of the photon fluence
at the beam edge (see Fig. 4). Near the patient’s skin,
the deviation between two lines is very big and in-
duces, with off-axis distance, the alteration of dosi-
metry quality. These alterations should be taken into
account in the radioprotection management and the
radiotherapy treatment quality inside the treatment
room.

Fig. 5 gives the variation of the maximum of the
photon beam fluence with the thickness of the air gap.
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Fig. 5. Maximum of the photon beam fluence as a function of the thickness of the air gap.

The maximum fluence decreases according to the
thickness of air gap due to the photon beam attenua-
tion in-depth and the maximum fluence decreases up
to 15 % considering an air gap thickness of 60 cm (see
Fig. 5). This finding is natural and its impact on do-
simetry is very negative due to the reduction of ener-
getic photons number and to the increase of the
amount of electrons contamination and photons of
low energy (scattered photons) for the deep tumour
treatment. The quality of dosimetry is deteriorated by
decreasing the number of energetic photons in paral-
lel of the increase of the amount of the particles con-
tamination by photon interactions with air atoms.

Therefore, the maximum of the photon fluence
does not vary linearly with off-axis distance due to
the flatness of the inner surface of jaws. With the
thickness of the air gap, the maximum of the photon
beam fluence is attenuated with thickness. At the
beam edge, both off-axis distance and thickness of the
air gap affect negatively and jointly the dosimetry
quality under the Linac head. In this work, we have
described qualitatively the air gap impacts on the
dosimetry quality in terms of photon fluence with off-

axis distance and with the thickness of air gap be-
tween the exit window of the Linac head and patient’s
skin. These results are in consistency with previous
studies [24, 25].

4. Conclusion

The air gap between the exit window of Linac head
and patient’s skin induces the dosimetry alteration that
increased with air gap thickness. The dosimetry altera-
tion with air gap could induce more complexes prob-
lems in radiotherapy treatment of deep tumour and
radioprotection quality inside the treatment room.

Our study can be a basic for radiotherapy quality
enhancement in Linac future generation in framework
to improve the treatment efficiency by reducing the
air gap effects on the beam dosimetry quality, which
is studied in our previous work [3].

The authors would like to thank Varian Medical
Systems to give us the Varian Clinac 2100 geometry
data and this opportunity to study the Varian linear
accelerator technology and to take part in its future
development.
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MOHTE-KAPJIO MOJAEJIOBAHHSA TA AHAJII3 IHTEHCUBHOCTI @OTOHHOTI'O ITYYKA
3AJIEZKHO BIJ TOBIIUHU MOBITPSIHOT'O ITPOMIZKKY .
MIK BUXOJOM JIHIMHOT'O IPUCKOPIOBAYA I HIKIPOIO IMTAIIEHTA B PAAIOTEPAIIIL

Jlinifini npucKOpIOBaui BUKOPHCTOBYIOTHCS IIPH JIIKyBaHHI IIPOMEHEBOIO Tepali€lo, 1 BJOCKOHAJICHHS
BIIMOBIAHUX TEXHOJIOTii 3a0e3nedyye BHCOKY SKICTh JO3UMETpIii, AKy ciiJ 30epertu Iyuisi BUCOKOI e(eKTHBHOCTI
tepamnii. OgHAaK YM 3MIHIOE MOBITPSHHUI MPOMDKOK M BHXIJHMM BIKHOM IIPUCKOpIOBaYa Ta LIKIPOKO MHAalli€HTa
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¢i3uuHi BnacTUBOCTI pOTOHHOTO NMyyka? 3aBAaHHSIM LIOTO JOCIIJKEHHS € OLIHKA 3MiHU (DI3UYHUX BIACTUBOCTEH
(DOTOHHOT'O TMOTOKY 3aJie)KHO BiJ TOBIIMHHM NPOMDKKY. ITOBITpSHHH NPOMIXOK IIpHM BUXOIl 3 NPHUCKOpIOBaya €
OCTaHHIM MaTepialloM Ha NUIAXY ITy4YKa; BiH 3MIHIOE SAKICTh My4YKa HA BXOJi B IIKipy Mami€HTa. 3a JOIIOMOTOIO
Moute-Kapio kony BEAMnrc Oyino npomojeiaboBaHo Buxia npuckoproBaua Varian Clinac 2100 Ta moBiTpsHUR
IIPOMIXKOK JI0 TTOBEPXHi (paHTOMa; HOMiIHaJIbHA eHepris myuka craHosmiia 6 MB. Kog BEAMDP BukopucroByBaBcs
IUIst o0uncIeHHd MOTOKY (oToHiB. [ToTik ocimadmoeTbes 1o 6 pasiB 3aJeXHO BiJl TOBIIUHU IMPOMIXKKY; KpPIM TOTO,
mpu 30iTbIICHH] TOBIIMHH 301TBIIYETHCSA 3a0pyIHEHHS ITydKa PO3CITHUMHU (DOTOHAMHU Ta EIEKTPOHAMH. TaKuMm
YHHOM, MOBITPSHUN MPOMDKOK Moripurye sikictb nmy4ka. 11{o0 ycyHyTH 3a0pyaHEeHHs Ta 30epertTu 3araibHy SIKiCTh
(OTOHHOT'O ITydYKa, YHCIO aKTiB B3aeMonii (OTOHIB 3 aTOMaMH MOBITPS BiJ BUXOAY 3 HPUCKOPIOBadYa i J0 MIKipH
Mali€HTa MOBHHHO OyTH SKOMOTa MEHIIHM; I1e 3a0e3MeYnTh O1ThII BHCOKY SKICTh JIKYBaHHA TIUOOKUX IyXJIHH
IPOMEHEBOIO TEPAITI€IO.

Kniouosi crnosa: MOBITpSHUN NMPOMIXOK, BUXIJ JIIHIKHOTO INPHCKOPIOBaYa, MOJENIIOBaHHS METOAO0M MoHTe-
Kapmo, sixicte poToHHOTO TyuKa, mporpama BEAMnrc.
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