Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2020, volume 21, issue 2, pages 113-128.
Section: Nuclear Physics.
Received: 12.11.2019; Accepted: 19.03.2020; Published online: 3.09.2020.
PDF Full text (en)
https://doi.org/10.15407/jnpae2020.02.113

Energy density functional and sensitivity of energies of giant resonances to bulk nuclear matter properties

S. Shlomo1, A. I. Sanzhur2,*

1Cyclotron Institute, Texas A&M University, College Station, USA
2Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine


*Corresponding author. E-mail address: sanjour@kinr.kiev.ua

Abstract: We provide a short review of the current status of the nuclear energy density functional (EDF) and the theoretical results obtained for properties of nuclei and nuclear matter. We will first describe a method for determining the parameters of the EDF, associated with the Skyrme type effective interaction, by carrying out a Hartree - Fock (HF)-based fit to the extensive set of data of ground-state properties and constraints. Next, we will describe the fully self-consistent HF-based random-phase-approximation (RPA) theory for calculating the strength functions S(E) and centroid energies ECEN of giant resonances and the folding model (FM) distorted wave Âorn approximation (DWBA) to calculate the excitation cross-section of giant resonances by α scattering. Then we will provide results for: (i) the Skyrme parameters of the KDE0v1 EDF; (ii) consequences of violation of self-consistency in HF-based RPA; (iii) FM-DWBA calculation of excitation cross-section; (iv) values of the ECEN of isoscalar and isovector giant resonances of multipolarities L = 0 – 3 for a wide range of spherical nuclei, using 33 EDFs associated with the standard form of the Skyrme type interactions, commonly employed in the literature; and (v) the sensitivities ECEN of the giant resonances to bulk properties of nuclear matter (NM). We also determine constraints on NM properties, such as the incompressibility coefficient and effective mass, by comparing with experimental data on ECEN of giant resonances.

Keywords: energy density functional, giant resonance, nuclear matter, strength function, random-phase-approximation.

References:

1. W. Kohn. Nobel Lecture: Electronic structure of matter – wave functions and density functionals. Rev. Mod. Phys. 71 (1999) 1253. https://doi.org/10.1103/RevModPhys.71.1253

2. N.K. Glendenning. Equation of state from nuclear and astrophysical evidence. Phys. Rev. C 37 (1988) 2733. https://doi.org/10.1103/PhysRevC.37.2733

3. J.M. Lattimer, M. Prakash. Neutron star observations: Prognosis for equation of state constraints. Phys. Rep. 442 (2007) 109. https://doi.org/10.1016/j.physrep.2007.02.003

4. A. Bohr, B.M. Mottelson. Nuclear Structure II (New York: Benjamin, 1975). Google books

5. V.M. Kolomietz, S. Shlomo. Mean Field Theory (Singapore: World Scientific, 2020) 565 p. https://doi.org/10.1142/11593

6. S. Shlomo, D.H. Youngblood. Nuclear matter compressibility from isoscalar giant monopole resonance. Phys. Rev. C 47 (1993) 529. https://doi.org/10.1103/PhysRevC.47.529

7. S. Shlomo. Modern Energy Density Functional for Nuclei and the Nuclear Matter Equation of State. In: The Universe Evolution: Astrophysical and Nuclear Aspects. Eds. I. Strakovsky, L. Blokhintsev (New York: Nova Science Publishers, 2013) p. 323. Book

8. G. Bonasera, M.R. Anders, S. Shlomo. Giant resonances in 40,48Ca, 68Ni, 90Zr, 116Sn, 144Sm, and 208Pb. Phys. Rev. C 98 (2018) 054316. https://doi.org/10.1103/PhysRevC.98.054316

9. B.K. Agrawal, S. Shlomo, V. Kim Au. Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C 72 (2005) 014310. https://doi.org/10.1103/PhysRevC.72.014310

10. M. Bender, P.-H. Heenen, P.-G. Reinhard. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75 (2003) 121. https://doi.org/10.1103/RevModPhys.75.121

11. Takashi Nakatsukasa et al. Time-dependent density-functional description of nuclear dynamics. Rev. Mod. Phys. 88 (2016) 045004. https://doi.org/10.1103/RevModPhys.88.045004

12. X. Roca-Maza, N. Paar. Nuclear equation of state from ground and collective excited state properties of nuclei. Prog. Part. Nucl. Phys. 101 (2018) 96. https://doi.org/10.1016/j.ppnp.2018.04.001

13. D. Vautherin, D.M. Brink. Hartree-Fock Calculations with Skyrme’s Interaction. I. Spherical Nuclei. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626

14. T.H.R. Skyrme. CVII. The Nuclear Surface. Phil. Mag. 1 (1956) 1043. https://doi.org/10.1080/14786435608238186

15. T.H.R. Skyrme. The effective nuclear potential. Nucl. Phys. 9 (1959) 615. https://doi.org/10.1016/0029-5582(58)90345-6

16. M. Dutra et al. Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85 (2012) 035201; https://doi.org/10.1103/PhysRevC.85.035201

P.D. Stevenson et al. Do Skyrme forces that fit nuclear matter work well in finite nuclei? arXiv:1210.1592 [nucl-th]. https://arxiv.org/abs/1210.1592

17. E. Chabanat et al. A Skyrme parametrization from subnuclear to neutron star densities. Nucl. Phys. A 627 (1997) 710; https://doi.org/10.1016/S0375-9474(97)00596-4

A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. A 635 (1998) 231. https://doi.org/10.1016/S0375-9474(98)00180-8

18. S. Shlomo, G.F. Bertsch. Nuclear response in the continuum. Nucl. Phys. A 243 (1975) 507. https://doi.org/10.1016/0375-9474(75)90292-4

19. Tapas Sil et al. Effects of self-consistency violation in Hartree-Fock RPA calculations for nuclear giant resonances revisited. Phys. Rev. C 73 (2006) 034316. https://doi.org/10.1103/PhysRevC.73.034316

20. B.K. Agrawal, S. Shlomo, A.I. Sanzhur. Self-cosistent Hartree-Fock based random phase approximation and the spurious state mixing. Phys. Rev. C 67 (2003) 034314. https://doi.org/10.1103/PhysRevC.67.034314

21. S. Shlomo, A.I. Sanzhur. Isoscalar giant dipole resonance and nuclear matter incompressibility coefficient. Phys. Rev. C 65 (2002) 044310. https://doi.org/10.1103/PhysRevC.65.044310

22. P.-G. Reinhard. From sum rules to RPA: 1. Nuclei. Ann. Phys. 504 (1992) 632. https://doi.org/10.1002/andp.19925040805

23. G.R. Satchler. Direct Nuclear Reactions (Oxford: Oxford University Press, 1983). Google books

24. A. Kolomiets, O. Pochivalov, S. Shlomo. Microscopic description of excitation of nuclear isoscalar giant resonances by inelastic scattering of 240 MeV α-particles. Phys. Rev. C 61 (2000) 034312. https://doi.org/10.1103/PhysRevC.61.034312

25. M.H. MacFarlane, S.C. Pieper. PTOLEMY: A program for heavy-ion direct-reaction calculations. Argonne National Laboratory report No. ANL-76-11, Rev. 1 (1978) 104 p. (unpublished). Report ANL 76-11

26. S. Shlomo. Compression modes and the nuclear matter incompressibility coefficient. Pramana - J. Phys. 57 (2001) 557. https://doi.org/10.1007/s12043-001-0062-4

27. S. Shlomo, V.M. Kolomietz, B.K. Agrawal. Isoscalar giant monopole resonance and its overtone in microscopic and macroscopic models. Phys. Rev. C 68 (2003) 064301. https://doi.org/10.1103/PhysRevC.68.064301

28. B.K. Agrawal, S. Shlomo, V. Kim Au. Critical densities for the Skyrme type effective interactions. Phys. Rev. C 70 (2004) 057302. https://doi.org/10.1103/PhysRevC.70.057302

29. J. Bartel et al. Towards a better parametrization of Skyrme-like effective forces: a critical study of the SkM force. Nucl. Phys. A 386 (1982) 79. https://doi.org/10.1016/0375-9474(82)90403-1

30. S. Shlomo. Nuclear Coulomb energies. Rep. Prog. Phys. 41 (1978) 957. https://doi.org/10.1088/0034-4885/41/7/001

31. S. Shlomo. Coulomb energies and charge asymmetry of nuclear forces. Phys. Lett. B 42 (1972) 146. https://doi.org/10.1016/0370-2693(72)90047-0

32. S. Shlomo, D.O. Riska. Charge symmetry breaking interactions and coulomb energy differences. Nucl. Phys. A 254 (1975) 281. https://doi.org/10.1016/0375-9474(75)90217-1

33. S. Shlomo, W.G. Love. Core Polarization and Coulomb Displacement Energies. Physica Scripta 26 (1982) 280. https://doi.org/10.1088/0031-8949/26/4/005

34. J. Button et al. Isoscalar E0, E1, E2 and E3 strength in 94Mo. Phys. Rev. C 94 (2016) 034315. https://doi.org/10.1103/PhysRevC.94.034315

35. B.K. Agrawal, S. Shlomo. Consequences of self-consistency violations in Hartree-Fock random-phase approximation calculations of the nuclear breathing mode energy. Phys. Rev. C 70 (2004) 014308. https://doi.org/10.1103/PhysRevC.70.014308

36. N.V. Giai, H. Sagawa. Spin-isospin and pairing properties of modified Skyrme interactions. Phys. Lett. B 106 (1981) 379. https://doi.org/10.1016/0370-2693(81)90646-8

37. H.P. Morsch et.al. New Giant Resonances in 172-MeV α Scattering from 208Pb. Phys. Rev. Lett. 45 (1980) 337. https://doi.org/10.1103/PhysRevLett.45.337

38. K.-F. Liu et al. Skyrme-Landau parameterization of effective interactions (I). Hartree-Fock ground states. Nucl. Phys. A 534 (1991) 1; https://doi.org/10.1016/0375-9474(91)90555-K

Skyrme-Landau parameterization of effective interactions (II). Self-consistent description of giant multipole resonances. Nucl. Phys. A 534 (1991) 25. https://doi.org/10.1016/0375-9474(91)90556-L

39. N.V. Giai, H. Sagawa. Monopole and dipole compression modes in nuclei. Nucl. Phys. A 371 (1981) 1. https://doi.org/10.1016/0375-9474(81)90741-7

40. D.H. Youngblood et al. Isoscalar E0-E3 strength in 116Sn, 144Sm, 154Sm, and 208Pb. Phys. Rev. C 69 (2004) 034315. https://doi.org/10.1103/PhysRevC.69.034315

41. G.A. Lalazissis, J. König, P. Ring. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 55 (1997) 540. https://doi.org/10.1103/PhysRevC.55.540

42. B.K. Agrawal, S. Shlomo, V. Kim Au. Nuclear matter incompressibility coefficient in relativistic and nonrelativistic microscopic models. Phys. Rev. C 68 (2003) 031304. https://doi.org/10.1103/PhysRevC.68.031304

43. D.H. Youngblood et al. Compression mode resonances in 90Zr. Phys. Rev. C 69 (2004) 054312. https://doi.org/10.1103/PhysRevC.69.054312

44. P.-G. Reinhard, H. Flocard. Nuclear effective forces and isotope shifts. Nucl. Phys. A 584 (1995) 467. https://doi.org/10.1016/0375-9474(94)00770-N

45. K. Klüpfel et al. Variations on a theme by Skyrme: A systematic study of adjustments of model parameters. Phys. Rev. C 79 (2009) 034310. https://doi.org/10.1103/PhysRevC.79.034310

46. N. Lyutorovich et al. Self-consistent calculations of the electric giant dipole resonances in light and heavy nuclei. Phys. Rev. Lett. 109 (2012) 092502. https://doi.org/10.1103/PhysRevLett.109.092502

47. L. Bennour et al. Charge distribution of 208Pb, 206Pb, and 205Tl and the mean-field approximation. Phys. Rev. C 40 (1989) 2834. https://doi.org/10.1103/PhysRevC.40.2834

48. P.-G. Reinhard et al. Shape coexistence and the effective nucleon-nucleon interaction. Phys. Rev. C 60 (1999) 014316. https://doi.org/10.1103/PhysRevC.60.014316

49. L.G. Cao et al. From Brueckner approach to Skyrme-type energy density functional. Phys. Rev. C 73 (2006) 014313. https://doi.org/10.1103/PhysRevC.73.014313

50. L.-W. Chen et al. Density slope of the nuclear symmetry energy from neutron skin thickness of heavy nuclei. Phys. Rev. C 82 (2010) 024321. https://doi.org/10.1103/PhysRevC.82.024321

51. A.W. Steiner et al. Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 411 (2005) 325. https://doi.org/10.1016/j.physrep.2005.02.004

52. P.A.M. Guichon et al. Physical origin of density dependent forces of Skyrme type within the quark meson coupling model. Nucl. Phys. A 772 (2006) 1. https://doi.org/10.1016/j.nuclphysa.2006.04.002

53. F. Tondeur et al. Static nuclear properties and the parametrization of Skyrme forces. Nucl. Phys. A 420 (1984) 297. https://doi.org/10.1016/0375-9474(84)90444-5

54. B.A. Brown et al. Neutron skin deduced from antiprotonic atom data. Phys. Rev. C 76 (2007) 034305. https://doi.org/10.1103/PhysRevC.76.034305

55. J. Friedrich, P.-G. Reinhard. Skyrme-force parameterization: Least-squares fit to nuclear ground-state properties. Phys. Rev. C 33 (1986) 335. https://doi.org/10.1103/PhysRevC.33.335

56. S. Shlomo, V.M. Kolomietz, G. Colo. Deducing the nuclear-matter incompessibility coefficient from data on isoscalar compression modes. Eur. Phys. J. A 30 (2006) 23. https://doi.org/10.1007/978-3-540-46496-9_3

57. M. Golin, L. Zamick. Collective models of giant states with density dependent interactions. Nucl. Phys. A 249 (1975) 320. https://doi.org/10.1016/0375-9474(75)90190-6