ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Advantage of a dynamical (B/Gd) neutron beam cancer therapy over a stationary therapy
Nassar H. S. Haidar*
Center for Research in Applied Mathematics and Statistics, Arts, Sciences and Technology University in Lebanon, Beirut, Lebanon
*Corresponding author. E-mail address:
nhaidar@suffolk.edu
Abstract: This communication reports on a demonstration that a dynamical neutron beam is superior, in penetrating the surface of a (B/Gd)-loaded cancerous region, to a stationary neutron beam of the same intensity. The reported analysis of this complex problem is based on a one-group neutron diffusion theory with a periodic external neutron beam source in a one-dimensional geometry.
Keywords: neutron diffusion, dynamical neutron source, cancer therapy.
References:1. N.H.S. Haidar. On a boundary value problem posed by cancer therapy with neutron beams. J. Austral. Math. Soc. B 39(1) (1997) 46. https://doi.org/10.1017/S0334270000009206
2. N.H.S. Haidar. Composite surface integral transforms in neutron therapy of cancer. Int. J. Theor. Phys. 41(1) (2002) 109. https://doi.org/10.1023/A:1013277701565
3. N.H.S. Haidar. On dynamical (B/Gd) neutron cancer therapy: an accelerator-based single neutron beam. Pacific J. Appl. Math. 9(1) (2018) 9.
4. N.H.S. Haidar. Optimization of two opposing neutron beams parameters in dynamical (B/Gd) neutron cancer therapy. Nucl. Energy Technol. 5(1) (2019) 1. https://doi.org/10.3897/nucet.5.32239
5. J.G. Fantidis. Beam shaping assembly study for BNCT facility based on a 2.5 MeV proton accelerator on a Li target. J. Theor. Appl. Phys. 12(4) (2018) 249. https://doi.org/10.1007/s40094-018-0312-1
6. X.C. Guan et al. The new design and validation of an epithermal neutron flux detector using 71Ga(n,γ)72Ga reaction for BNCT. J. Instrumentation 14(6) (2019) P06016. https://doi.org/10.1088/1748-0221/14/06/P06016
7. N. Hosmane. Boron and Gadolinium Neutron Capture for Cancer Treatment (New York: World Scientific, 2012) 272 p. https://doi.org/10.1142/8056
8. R.F. Alvarez-Estrada, M.L. Calvo. Neutron Fibers and Possible Applications to NCT. Appl. Rad. Isotop. 61 (2004) 841. https://doi.org/10.1016/j.apradiso.2004.05.039
9. A.F. Henry. Nuclear Reactor Analysis (Cambridge, Massachusetts: The MIT Press, 1975) 547 p. Google books
10. E. Cervi et al. A new approach for nuclear reactor analysis based on complex network theory. Prog. Nucl. Energy 112 (2019) 96. https://doi.org/10.1016/j.pnucene.2018.12.008
11. M.G. Mazaher et al. A time dependent Monte Carlo approach for nuclear reactor analysis in 3-D arbitrary geometry. Prog. Nucl. Energy 115 (2019) 80. https://doi.org/10.1016/j.pnucene.2019.03.024
12. E. Möller, N.G. Sjöstrand. Measurements of the slowing-down and thermalization time of neutrons in water. Arkiv för Fysik 27(31) (1964) 501.
13. S. Hirschberg. Neutron slowing-down time in finite water systems. Ann. Nucl. Energy 10(8) (1983) 405. https://doi.org/10.1016/0306-4549(83)90090-7
14. K.H. Beckurts, K. Wirtz. Neutron Physics (Berlin: Springer-Verlag, 1964) 444 p. https://doi.org/10.1007/978-3-642-87614-1
15. N.H.S. Haidar. On dynamical (B/Gd) neutron cancer therapy by accelerator-based two opposing neutron beams. J. Nucl. Med. Rad. Therapy 8(6) (2017) 345. https://doi.org/10.4172/2155-9619.1000345
16. N.H.S. Haidar. An additive separation of variables 3D solution to a dynamical BVP for neutron cancer therapy. Int. J. Dyn. Syst. Diff. Eqns. 9(2) (2019) 140. https://doi.org/10.1504/IJDSDE.2019.100563