Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2020, volume 21, issue 1, pages 95-100.
Section: Engineering and Methods of Experiment.
Received: 15.01.2020; Accepted: 19.03.2020; Published online: 14.05.2020.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2020.01.095

Testing of gas-turbine blades engines using the accelerator of high current relativistic electrons

S. E. Donets1, V. F. Klepikov1, V. V. Lytvynenko1,*, E. M. Prokhorenko1, Yu. F. Lonin2, A. G. Ponomarev2, O. A. Startsev1, V. T. Uvarov2

1 Institute of Electrophysics and Radiation Technologies, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2NSC "Kharkiv Institute of Physics and Technology", National Academy of Sciences of Ukraine, Kharkiv, Ukraine


*Corresponding author. E-mail address: vvlytvynenko@ukr.net

Abstract: The problem of using high current relativistic electron beams for testing blades of gas-turbine engines for the action of highly concentrated energy flows is studied. The data obtained will allow us to understand the directions of use of accelerators to determine the limits of radiation and thermal impact at which products are able to maintain performance. The peculiarities of grain structure change under the influence of electron fluxes of different densities have been established. It has been shown that the mechanism of destruction is to increase the pores at the grain boundaries and to melt them.

Keywords: high current electron accelerator, blade of gas-turbine engine, irradiation.

References:

1. T.V. Kovalinska, I.A. Ostapenko, V.I. Sakhno. The technology of steady electron irradiation of large size industrial products. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 17(2) (2016) 199. (Ukr) https://doi.org/10.15407/jnpae2016.02.199

2. T.V. Kovalinska, V.I. Sakhno. Electrophysical simulator of nuclear energy striking factors. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 20(1) (2019) 84. (Ukr) https://doi.org/10.15407/jnpae2019.01.084

3. A.V. Boguslayev, V.V. Murashko. Gas cycle coating of turbine blades of gas turbine engines. Vestnik Dvigatelestroeniya 4(6) (2006) 73. (Rus) http://journal.zntu.edu.ua/vd/files/VD42006/VD(4)_2006.pdf

4. C.A. Estrada M. New technology used in gas turbine blade materials. Scientia et Technica Año XIII, 36 (2007) 297. https://dialnet.unirioja.es/descarga/articulo/4792527.pdf

5. I.G. Kvasnytska. Improving the performance of working blades of modern industrial gas turbine engines. Metall i Litye Ukrainy 8 (2015) 29. (Rus)

6. S.I. Plankovskiy, F.F. Golovin, F.F. Sirenko. Considering of the existent techniques of cleaning turbine blade surface in gas turbine engines. Aviatsijno-kosmichna Tekhnika i Tekhnologiya (Aero-space Technic and Technology) 6(103) (2013) 8. (Rus) http://nti.khai.edu:57772/csp/nauchportal/Arhiv/AKTT/2013/AKTT613/Plankovs.pdf

7. V.A. Shulov et al. Application of high-current pulsed electron beams for modifying the surface of gas-turbine engine blades. Russian Journal of Non-Ferrous Metals 57 (2016) 256. https://doi.org/10.3103/S1067821216030147

8. S.E. Donets et al. Aluminum surface coating of copper using high-current electron beam. Problems of Atomic Science and Technology 98(4) (2015) 302. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2015_4/article_2015_4_302.pdf

9. N.I. Bazaleev et al. Simulating the radiation transformations in rocks: potential media for radioactive waste disposal. Physics of Particles and Nuclei Letters 6(5) (2009) 417. http://doi.org/10.1134/S1547477109050100

10. V.F. Klepikov et al. Behavior of Zr1%Nb Alloy Under Swift Kr Ion and Intense Electron Irradiation. Journal of Nano- and Electronic Physics 7(4) (2015) 04016. https://jnep.sumdu.edu.ua/en/full_article/1605

11. A.G. Kobets et al. Melting effects of high-current relativistic electron beam on aluminum alloy 1933. Surface Engineering and Applied Electrochemistry 51(5) (2015) 478. https://doi.org/10.3103/S1068375515050075

12. V.D. Volovik, V.T. Lazurik. Acoustic effect of charged particle beams in metals. Fizika Tverdogo Tela (Physics of the Solid State) 15 (1973) 2305. (Rus)

13. G. Bleuher, V. Krivobokov, Î. Pashchenko. Thermophysical processes in solid state by the influence of power pulse charged particles. Izvestiya Tomskogo Politekhnicheskogo Universiteta: Rad. Fizika Tverdogo Tela i Rad. Tekhnologii 303(2) (2000) 71. (Rus)

14. S.S. Batsanov, B.A. Demidov, L.I. Rudakov. Using high intensity REB to perform structural trasformations. Pis'ma v Zhurnal Tekhnicheskoy Fiziki (Technical Physics Letters) 30 (1979) 611. (Rus)

15. V.T. Uvarov et al. Radiation acoustic control over the thermal parameter of construction materials irradiated by intense relativistic electron beam. Physics of Particles and Nuclei Letters 11(3) (2014) 274. https://doi.org/10.1134/S1547477114030157

16. V.F. Klepikov et al. Dynamics of the gas-plasma torch formed by the high-current electron beam action on solid targets. Problems of Atomic Science and Technology 1(15) (2009) 119. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2009_1/article_2009_1_119.pdf

17. E.M. Prokhorenko et al. Metal containing composition materials for radiation protection. Problems of Atomic Science and Technology 4(92) (2014) 125. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2014_4/article_2014_4_125.pdf

18. E.M. Prokhorenko et al. Improvement of characteristics of composite materials for radiation biological protection. Problems of Atomic Science and Technology 6(88) (2013) 240. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_6/article_2013_6_240.pdf

19. À.I. Skrypnyk et al. Simulation of characteristics of gamma-radiation detectors based on mercury compounds. Problems of Atomic Science and Technology 3(85) (2013) 231. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_3/article_2013_3_231.pdf

20. P.M. Amarasinghe et al. Growth of high quality mercurous halide single crystals by physical vapor transport method for AOM and radiation detection applications. Journal of Crystal Growth 450 (2016) 96. https://doi.org/10.1016/j.jcrysgro.2016.06.025