ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Nuclear structure study of even-even 24-42Si isotopes using Skyrme - Hartree - Fock and Hartree - Fock - Bogolyubov methods
Ali A. Abdul Hasan1, Ehsan M. Raheem1,*, Saad S. Dawood1, Aqeel M. Jary1, Rasha Z. Ahmed2
1 Ministry of Science and Technology, Directorate of Nuclear Researches and Applications, Baghdad, Iraq
2 University of Baghdad, College of Education for Women, Department of Human Resources, Baghdad, Iraq
*Corresponding author. E-mail address:
ehsan.nucl@yahoo.com
Abstract: The nuclear ground-state properties and the nuclear deformation of some even-even Silicon isotopes have been investigated. The spherical Skyrme-Hartree-Fock method that includes Hartree-Fock calculations in addition to several common Skyrme parameterizations, such as SkB, SkM*, SkE, SkX, SLy4, Skxta, SkP, UNEDF0, and UNEDF1, has been used to calculate the nuclear ground-state charge density distributions and the associated charge radii for 28Si and 30Si, because of the availability of the experimental data for these two stable isotopes. Furthermore, the mass, neutron and proton densities with the associated radii, the binding energies, the neutron skin thickness, and the charge form factors have been calculated for 24-42Si isotopes using SkM* parameterization. The quadrupole deformations of the selected isotopes have been investigated in terms of the potential energy curves that were deduced as a function of the quadrupole deformation parameters using the axially deformed configurational Hartree-Fock-Bogolyubov calculations with SkM* parameterization.
Keywords: nuclear ground-state properties, Skyrme-Hartree-Fock, Hartree-Fock-Bogolyubov, quadrupole deformation, silicon isotopes.
References:1. P. Ring, P. Schuck. The Nuclear Many-Body Problem (Springer Science & Business Media, 2004) 716 p. Google books
2. J.-P. Blaizot, G. Ripka. Quantum Theory of Finite Systems (MIT press Cambridge, MA, 1986) 657 p. Google books
3. T.H.R. Skyrme. The effective nuclear potential. Nucl. Phys. 9 (1958) 615. https://doi.org/10.1016/0029-5582(58)90345-6
4. D. Vautherin, D.M. Brink. Hartree-Fock calculations with Skyrme’s interaction. I. Spherical nuclei. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626
5. C.B. Dover, N. Van Giai. The nucleon-nucleus potential in the Hartree-Fock approximation with Skyrme’s interaction. Nucl. Phys. A 190 (1972) 373. https://doi.org/10.1016/0375-9474(72)90148-0
6. T. Deforest Jr, J.D. Walecka. Electron scattering and nuclear structure. Adv. Phys. 15(57) (1966) 1. https://doi.org/10.1080/00018736600101254
7. K.W. Schmid, P.G. Reinhart. Center-of-mass projection of Skyrme-Hartree-Fock densities. Nucl. Phys. A 530 (1991) 283. https://doi.org/10.1016/0375-9474(91)90804-F
8. A.L. Goodman. Hartree-Fock-Bogoliubov Theory with Applications to Nuclei. Advances in Nuclear Physics 11 (1979) 263.
9. J. Bartel et al. Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386 (1982) 79. https://doi.org/10.1016/0375-9474(82)90403-1
10. M.V. Stoitsov, W. Nazarewicz, S. Pittel. New discrete basis for nuclear structure studies. Phys. Rev. C 58 (1998) 2092. https://doi.org/10.1103/PhysRevC.58.2092
11. M.V. Stoitsov et al. Quadrupole deformations of neutron-drip-line nuclei studied within the Skyrme Hartree-Fock-Bogoliubov approach. Phys. Rev. C 61 (2000) 034311. https://doi.org/10.1103/PhysRevC.61.034311
12. M.V. Stoitsova et al. Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis. The program HFBTHO (v1. 66p). Comput. Phys. Commun. 167 (2005) 43. https://doi.org/10.1016/j.cpc.2005.01.001
13. Y. Yulianto, Z. Su'ud. Nuclear binding energy and density distribution of Pb isotopes in a Skyrme-Hartree-Fock method. Nucl. Phys. At. Energy 18 (2017) 151. https://doi.org/10.15407/jnpae2017.02.151
14. Y. Yulianto, Z. Su'ud. Radii and Density Calculations of 209Bi by Using Skyrme-Hartree-Fock Method. J. Phys. Conf. Ser. 799 (2017) 12024. https://doi.org/10.1088/1742-6596/799/1/012024
15. A.N. Abdullah. Matter density distributions and elastic form factors of some two-neutron halo nuclei. Pramana 89 (3) (2017) 43. https://doi.org/10.1007/s12043-017-1445-5
16. A.H. Taqi, E.G. Khidher. Ground and transition properties of 40Ca and 48Ca nuclei. Nucl. Phys. At. Energy 19 (2018) 326. https://doi.org/10.15407/jnpae2018.04.326
17. A.A. Alzubadi, R.A. Radhi, N.S. Manie. Shell model and Hartree-Fock calculations of longitudinal and transverse electroexcitation of positive and negative parity states in 17O. Phys. Rev. C 97 (2018) 024316. https://doi.org/10.1103/PhysRevC.97.024316
18. T. Bayram, A.H. Yilmaz. Shape of Te isotopes in mean-field formalism. Pramana 83(6) (2014) 975. https://doi.org/10.1007/s12043-014-0816-4
19. Y. El Bassem, M. Oulne. Ground-state properties of even-even and odd Nd, Ce, and Sm isotopes in Hartree-Fock-Bogoliubov method. Int. J. Mod. Phys. E 24(10) (2015) 1550073. https://doi.org/10.1142/S0218301315500731
20. Y. El Bassem, M. Oulne. Hartree-Fock-Bogoliubov calculation of ground-state properties of even-even and odd Mo and Ru isotopes. Nucl. Phys. A 957 (2017) 22. https://doi.org/10.1016/j.nuclphysa.2016.07.005
21. M. Ouhachi et al. Nuclear structure investigation of neutron-rich Mn isotopes. Chinese J. Phys. 56 (2018) 574. https://doi.org/10.1016/j.cjph.2018.01.016
22. W. Greiner, J.A. Maruhn. Nuclear Models (Springer, 1996). https://doi.org/10.1007/978-3-642-60970-1
23. H. Aytekin, R. Baldik, H. Alici. On the nuclear properties of 32S, 64Zn, 67Zn, 89Y, 90Zr and 153Eu targets used for production of 32P, 64Cu, 67Cu, 89Sr, 90Y, and 153Sm therapeutic radionuclides. Ann. Nucl. Energy 46 (2012) 128. https://doi.org/10.1016/j.anucene.2012.03.025
24. P.-G. Reinhard et al. Shape coexistence and the effective nucleon-nucleon interaction. Phys. Rev. C 60 (1999) 014316. https://doi.org/10.1103/PhysRevC.60.014316
25. J. Erler, P. Klupfel, P.G. Reinhard. Self-consistent nuclear mean-field models: example Skyrme-Hartree-Fock. J. Phys. G 38 (2011) 33101. https://doi.org/10.1088/0954-3899/38/3/033101
26. M. Brack, C. Guet, H.B. Hakansson. Selfconsistent semiclassical description of average nuclear bulk properties - a link between microscopic and macroscopic models. Phys. Rep. 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5
27. E.B. Suckling. Nuclear Structure and Dynamics from the Fully Unrestricted Skyrme-Hartree-Fock Model (Ph.D. Thesis, Univ. of Surrey, 2011). http://www.met.reading.ac.uk/~emma/publications/thesis-suckling-2011.pdf
28. M. Beiner et al. Nuclear ground-state properties and self-consistent calculations with the Skyrme interaction:(I). Spherical description. Nucl. Phys. A 238 (1975) 29. https://doi.org/10.1016/0375-9474(75)90338-3
29. A. Bohr, B.R. Mottelson, D. Pines. Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state. Phys. Rev. 110 (1958) 936. https://doi.org/10.1103/PhysRev.110.936
30. A.A. Alzubadi, A.A. Abdulhasan. Nuclear deformation study using the framework of self-consistence Hartree-Fock-Bogoliubov. Karbala Int. J. Mod. Sci. 1 (2015) 110. https://doi.org/10.1016/j.kijoms.2015.09.002
31. L.R.B. Elton. Nuclear Sizes (London: Oxford University Press, 1961) 114 p. Google books
32. A.N. Antonov. Charge density distributions and related form factors in neutron-rich light exotic nuclei. Int. J. Mod. Phys. E 13 (2004) 759. https://doi.org/10.1142/S0218301304002430
33. H. De Vries, C.W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. At. Data. Nucl. Data Tables 36 (1987) 495. https://doi.org/10.1016/0092-640X(87)90013-1
34. B. Schuetrumpf, W. Nazarewicz, P.-G. Reinhard. Central depression in nucleonic densities: Trend analysis in nuclear density-functional-theory approach. Phys. Rev. C 96 (2017) 024306. https://doi.org/10.1103/PhysRevC.96.024306
35. H.S. Kohler. Skyrme force and the mass formula. Nucl. Phys. A 258 (1976) 301. https://doi.org/10.1016/0375-9474(76)90008-7
36. J. Friedrich, P.-G. Reinhard. Skyrme-force parametrization: Least-squares fit to nuclear ground-state properties. Phys. Rev. C 33 (1986) 335. https://doi.org/10.1103/PhysRevC.33.335
37. B.A. Brown. New Skyrme interaction for normal and exotic nuclei. Phys. Rev. C 58 (1998) 220. https://doi.org/10.1103/PhysRevC.58.220
38. E. Chabanat. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. A 635 (1998) 231. https://doi.org/10.1016/S0375-9474(98)00180-8
39. B.A. Brown et al. Tensor interaction contributions to single-particle energies. Phys. Rev. C 74 (2006) 061303. https://doi.org/10.1103/PhysRevC.74.061303
40. J. Dobaczewski, H. Flocard, J. Treiner. Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422 (1984) 103. https://doi.org/10.1016/0375-9474(84)90433-0
41. M. Kortelainen et al. Nuclear energy density optimization. Phys. Rev. C 82 (2010) 024313. https://doi.org/10.1103/PhysRevC.82.024313
42. M. Kortelainen et al. Nuclear energy density optimization: Large deformations. Phys. Rev. C 85 (2012) 024304. https://doi.org/10.1103/PhysRevC.85.024304
43. I. Angeli, K.P. Marinova. Table of experimental nuclear ground-state charge radii: An update. At. Data. Nucl. Data Tables 99 (2013) 69. https://doi.org/10.1016/j.adt.2011.12.006
44. M. Wang et al. The Ame2012 atomic mass evaluation. Chinese Phys. C 36 (2012) 1603. https://doi.org/10.1088/1674-1137/36/12/003
45. G.C. Li, M.R. Yearian, I. Sick. High-momentum-transfer electron scattering from 24Mg, 27Al, 28Si, and 32S. Phys. Rev. C 9 (1974) 1861. https://doi.org/10.1103/PhysRevC.9.1861
46. J. Wesselling et al. 2s1/2 occupancies in 30Si, 32P, and 32S. Phys. Rev. C 55 (1997) 2773. https://doi.org/10.1103/PhysRevC.55.2773