А. Т. Рудчик^{1,*}, А. А. Рудчик¹, О. О. Чепурнов¹, К. Русек², К. В. Кемпер³, Є. І. Кощий⁴, С. Ю. Межевич¹, Вал. М. Пірнак¹, О. А. Понкратенко¹, А. Столяж², Р. Сюдак⁵, А. П. Ільїн¹, Б. В. Міщенко¹, Ю. М. Степаненко¹, В. В. Улещенко¹, Ю. О. Ширма¹

¹ Інститут ядерних досліджень НАН України, Київ, Україна

² Лабораторія важких іонів Варшавського університету, Варшава, Польща

³ Відділ фізики Флоридського державного університету, Таллахасі, США

⁴ Циклотронний інститут Техаського А&М університету, Техас, США

⁵ Інститут ядерної фізики ім. Г. Неводнічаньского, Краків, Польща

*Відповідальний автор: rudchik@kinr.kiev.ua

ПРУЖНЕ Й НЕПРУЖНЕ РОЗСІЯННЯ ІОНІВ ¹⁰В ЯДРАМИ ⁶Li ПРИ ЕНЕРГІЇ 51 МеВ

Отримано нові експериментальні дані диференціальних перерізів пружного й непружного розсіяння іонів ¹⁰В ядрами ⁶Li при енергії $E_{\rm лаб}(^{10}\text{B}) = 51$ MeB для основних і збуджених станів 2,18 – 5,7 MeB ядра ⁶Li та 0,7 – 6,56 MeB ядра ¹⁰B. Отримані експериментальні дані та відомі з літератури дані пружного розсіяння іонів ⁶Li ядрами ¹⁰B при енергії $E_{\rm лаб}(^{6}\text{Li}) = 30$ MeB проаналізовано за методом зв'язаних каналів реакцій. У схему зв'язку каналів включалися пружне й непружне розсіяння ядер ⁶Li + ¹⁰B, процеси переорієнтації спінів ядер ⁶Li i ¹⁰B та найбільш важливі реакції передач. Визначено параметри потенціалу взаємодії ядер ⁶Li + ¹⁰B типу Вудса – Саксона та параметри деформації ядер ⁶Li i ¹⁰B. Досліджено механізми непружного розсіяння ядер ⁶Li + ¹⁰B у рамках моделі колективних збуджень ядер, а також відмінності пружного розсіяння ядер ⁶Li + ¹⁰B при використанні потенціалів взаємодії ядер ⁶Li + ¹⁰B при використанні потенціалів взаємодії ядер ⁶Li + ¹⁰B, ⁷Li + ¹⁰B i ⁶Li + ¹¹B, визначено внески в пружне розсіяння ядер ⁶Li + ¹⁰B при використанні потенціалів взаємодії ядер ⁶Li + ¹⁰B, ⁷Li + ¹⁰B i ⁶Li + ¹¹B, визначено внески в пружне розсіяння ядер ⁶Li + ¹⁰B при використанні потенціалів взаємодії ядер ⁶Li + ¹⁰B, ⁷Li + ¹⁰B i ⁶Li + ¹¹B, визначено внески в пружне розсіяння ядер ⁶Li + ¹⁰B при використанні потенціалів взаємодії ядер ⁶Li + ¹⁰B, ⁷Li + ¹⁰B i ⁶Li + ¹⁰B, обчислених за трансляційно-інваріантною моделлю оболонок.

Ключові слова: ядерні реакції ⁶Li(¹⁰B, ¹⁰B), *E* = 51 МеВ, ядерні спектри, $\sigma(\theta)$, механізми розсіяння ядер, параметри деформації ядер.

А. Т. Рудчик^{1,*} А. А. Рудчик¹, О. О. Чепурнов¹, К. Русек², К. В. Кемпер³, Е. И. Кощий⁴, С. Ю. Межевич¹, Вал. М. Пирнак¹, О. А. Понкратенко¹, А. Столяж², Р. Сюдак⁶, А. П. Ильин¹, Б. В. Мищенко¹, Ю. М. Степаненко¹, В. В. Улещенко¹, Ю. О. Ширма¹

¹ Институт ядерных исследований НАН Украины, Киев, Украина ² Лаборатория тяжелых ионов Варшавского университета, Варшава, Польша ³ Отдел физики Флоридского государственного университета, Таллахаси, США ⁴ Циклотронный институт Техасского A&M университета, Техас, США ⁵ Институт ядерной физики им. Г. Неводничаньского, Краков, Польша

*Ответственный автор: rudchik@kinr.kiev.ua

УПРУГОЕ И НЕУПРУГОЕ РАССЕЯНИЕ ИОНОВ ¹⁰В ЯДРАМИ ⁶Li ПРИ ЭНЕРГИИ 51 МэВ

Получены новые экспериментальные данные дифференциальных сечений упругого и неупругого рассеяния ионов ¹⁰В ядрами ⁶Li при энергии $E_{na6}(^{10}\text{B}) = 51$ МэВ для основных и возбужденных состояний 2,18 – 5,7 МэВ ядра ⁶Li и 0,7 – 6,56 МэВ ядра ¹⁰В. Измеренные экспериментальные данные и известные из литературы данные упругого рассеяния ионов ⁶Li ядрами ¹⁰В при энергии $E_{na6}(^{6}\text{Li}) = 30$ МэВ проанализированы по методу связанных каналов реакций. В схему связи каналов были включены упругое и неупругое рассеяние ядер ⁶Li + ¹⁰B, процессы переориентации спинов ядер ⁶Li и ¹⁰В и самые важные реакции передач. Определены параметры потенциала взаимодействия ядер ⁶Li + ¹⁰B типа Вудса - Саксона и параметры деформации ядер ⁶Li и ¹⁰B. Исследованы механизмы неупругого рассеяния ядер ⁶Li + ¹⁰B в рамках модели коллективных возбуждений ядер, исследованы отличия упругого рассеяния ядер ⁶Li + ¹⁰B при использовании параметров потенциалов взаимодействия ядер ⁶Li + ¹¹B, определены вклады в упругое рассеяние ядер ⁶Li + ¹⁰B реакций одно- и двухступенчастых передач нуклонов и кластеров, рассчитанных по трансляционно-инвариантной модели оболочек.

Ключевые слова: ядерные реакции ⁶Li(¹⁰B, ¹⁰B), E = 51 МэВ, ядерные спектры, $\sigma(\theta)$, механизмы рассеяния ядер, параметры деформации ядер.

A. T. Rudchik^{1,*}, A. A. Rudchik¹, O. O. Chepurnov¹, K. Rusek², K. W. Kemper³, E. I. Koshchy⁴, S. Yu. Mezhevych¹, Val. M. Pirnak¹, O. A. Ponkratenko¹, A. Stolarz², R. Siudak⁵, A. P. Ilyin¹, B. V. Mishchenko¹, Yu. M. Stepanenko¹, V. V. Uleshchenko¹, Yu. O. Shyrma¹

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

² Heavy Ion Laboratory of Warsaw University, Warsaw, Poland

³ Physics Department, Florida State University, Tallahassee, USA

⁴ Cyclotron Institute, Texas A&M University, College Station, USA

⁵ H. Niewodniczański Institute of Nuclear Physics, Cracow, Poland

*Corresponding author: rudchik@kinr.kiev.ua

ELASTIC AND INELASTIC SCATTERING OF ¹⁰B IONS BY ⁶Li NUCLEI AT ENERGY 51 MeV

New experimental data of angular distributions for the elastic and inelastic scattering of ¹⁰B ions by ⁶Li nuclei were obtained at the energy $E_{lab}(^{10}B) = 51$ MeV for the ground and excited 2.18 - 5.7 MeV states of ⁶Li and 0.7 - 6.56 MeV states of ¹⁰B. These elastic and inelastic scattering data and known from literature data of elastic scattering of ⁶Li ions by ¹⁰B nuclei at energy $E_{lab}(^{6}Li) = 30$ MeV were analyzed within coupled-reaction-channels method. The ⁶Li + ¹⁰B elastic and inelastic scattering data, spin reorientation of ⁶Li and ¹⁰B, as well as more important transfer reactions, were included in the channels-coupling scheme. The Woods - Saxon potential parameters, as well as ⁶Li and ¹⁰B deformation parameters, were deduced. The mechanisms of the ⁶Li + ¹⁰B inelastic scattering were studied within the model of collective nuclei excitations, the differences of the ⁶Li + ¹⁰B elastic scattering from using ⁶Li + ¹⁰B, ⁷Li + ¹⁰B and ⁶Li + ¹¹B potentials were observed, the contributions of one- and two-step transfers were deduced using spectroscopic amplitudes for transfer particles calculated within the translation invariant shell model.

Keywords: nuclear reactions ⁶Li(¹⁰B, ¹⁰B), E = 51 MeV, particle spectra, $\sigma(\theta)$, nuclear scattering mechanisms, nuclear deformation parameters.

REFERENCES

- 1. K.W. Kemper et al. Spectroscopic information from the ⁹Be(⁷Li, ⁶He)¹⁰B and ⁹Be(⁷Li, ⁶Li)¹⁰Be reactions. Phys. Rev. C 15 (1977) 1726.
- 2. M. Kowalczyk. SMAN: A Code for Nuclear Experiments. Warsaw University Report, 1998.
- 3. A.T. Rudchik et al. Isotopic effects in the $^{7}Li + {}^{10,11}B$ elastic and inelastic scattering. Eur. Phys. J. A 33 (2007) 317.
- 4. J. Cook. DFPOT a program for the calculation of double folded potentials. Comp. Phys. Com. 25(2) (1982) 125.
- 5. R.V. Reid. Local phenomenological nucleon-nucleon potentials. An. Phys. 50 (1968) 411.
- R.V. Bertsch et al. Interactions for inelastic scattering derived from realistic interactions. Nucl. Phys. A 284 (1977) 399.
- 7. H. De Vries, C.W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables 36 (1987) 495.
- 8. I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- 9. M.F. Vineyard, K.W. Kemper, J. Cook. Excitation of ⁶Li by ¹⁶O at $E_{c.m.} = 18.7$ MeV. Phys. Lett. B 142 (1984) 249.
- 10. A.T. Rudchik et al. Elastic and inelastic scattering of ⁶Li + ¹⁸O versus ⁷Li + ¹⁸O and ⁶Li + ¹⁶O. Nucl. Phys. A 922 (2014) 71.
- 11. Yu.F. Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the p-shell nuclei. Phys. Rev. C 15 (1977) 84.
- A.T. Rudchik, Yu.M. Tchuvil'sky. Spectroscopic amplitude calculations for different clusters in the 1p-shell nuclei (code DESNA). The preprint of the Institute for Nuclear Research AS of Ukraine. КИЯИ-82-12 (Kyiv, 1982) 27 p. (Rus)
- 13. A.T. Rudchik, Yu.M. Tchuvil'sky. Spectroscopic amplitudes of multinucleon clusters in the 1p-shell nuclei and multinucleon transfer reaction analysis. Ukrainian Journal of Physics 30 (1985) 819. (Rus)
- 14. A.N. Boyarkina. Structure of Nuclei of 1p-shell (Moskva: Moscow University, 1973) 62 p. (Rus)

Надійшла / Received 22.10.2019