Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2007, volume 8, issue 3, pages 17-23.
Section: Nuclear Physics.
Received: 23.06.2006; Published online: 30.09.2007.
PDF Full text (en)
https://doi.org/10.15407/jnpae2007.03.017

Properties of heavy and superheavy nuclei

A. Sobiczewski1

1Sołtan Institute for Nuclear Studies, Warsaw, Poland

Abstract: Recent studies of the properties of heaviest nuclei done in our theoretical group in Warsaw are shortly reviewed. They concentrate mainly on two topics: heights of static fission barriers Bfst and single-particle properties of these nuclei. In the analysis of Bfst, a crucial role is played by the deformation space used in the analysis. Results obtained in the case when only axially symmetric shapes of a nucleus are admitted, and also when non-axial deformations are included, are illustrated. Concerning the single-particle properties of heaviest nuclei, one-quasiparticle spectra of them are discussed. Influence of the spectra on the transition energies in the α-decay chains and also on the α-decay half-lives are illustrated.

References:

1. Hofmann S., Münzenberg G. Rev. Mod. Phys. 72 (2000) 733. https://doi.org/10.1103/RevModPhys.72.733

2. Oganessian Yu. Ts. et al. Nucl. Phys. A 685 (2001) 17. https://doi.org/10.1016/S0375-9474(01)00525-5

3. Armbruster P. Acta Phys. Pol. B 34 (2003) 1825.

4. Morita K. et al. Eur. Phys. J. A 21 (2004) 257. https://doi.org/10.1140/epja/i2003-10205-1

5. Gregorich K. E. et al. Phys. Rev. C 72 (2005) 014605. https://doi.org/10.1103/PhysRevC.72.014605

6. Möller P., Nix J. R. J. Phys. G 20 (1994) 1681. https://doi.org/10.1088/0954-3899/20/11/003

7. Greiner W. Int. J. Mod. Phys. E 5 (1995).

8. Sobiczewski A. Usp. Fiz. Nauk 166 (1996) 943;

Physics-Uspekhi 39 (1996) 885.

9. Meng J., Toki H., Zhou S. G. et al. Prog. Part. Nucl. Phys. (2006) (in press).

10. Sobiczewski A., Pomorski K. Prog. Part. Nucl. Phys. (2006) (in press).

11. Hoffman D. C., Lane M. R. Radiochim. Acta 70-71 (1995) 135. https://doi.org/10.1524/ract.1995.7071.special-issue.135

12. Gäggeler H. W. Proc. of the R. A. Welch Foundation 41st Conf. on Chemical Research: The Transactinide Elements (Houston: R. A. Welch Foundation, 1997) p. 43.

13. Zvara I. Acta Phys. Pol. B 34 (2003) 1743.

14. Türler A. et al. Eur. Phys. J. A 17 (2003) 505.

15. Schädel M. Acta Phys. Pol. B 34 (2003) 1701.

16. The Chemistry of Superheavy Elements. Ed. by M. Schädel (Kluwer Acad. Publishers, 2003).

17. Armbruster P. Ann. Rev. Nucl. Part. Sci. 35 (1985) 135. https://doi.org/10.1146/annurev.ns.35.120185.001031

18. Smolanczuk R., Skalski J., Sobiczewski A. Phys. Rev. C 52 (1995) 1871. https://doi.org/10.1103/PhysRevC.52.1871

19. Swiatecki W. J., Siwek-Wilczynska K., Wilczynski J. Acta Phys. Pol. B 34 (2003) 2049.

20. Volkov V. V. Fiz. Element. Chastits i At. Yadra 35 (2004) 797.

21. Itkis M. G., Oganessian Yu. Ts., Zagrebaev V. I. Phys. Rev. C 65 (2002) 044602. https://doi.org/10.1103/PhysRevC.65.044602

22. Mamdouh A., Pearson J. M., Rayet M., Tondeur F. Nucl. Phys. A 679 (2001) 337. https://doi.org/10.1016/S0375-9474(00)00358-4

23. Muntian I., Patyk Z., Sobiczewski A. Acta Phys. Pol. B 34 (2003) 2141.

24. Möller P., Sierk A. J., Iwamoto A. Phys. Rev. Lett. 92 (2004) 072501. https://doi.org/10.1103/PhysRevLett.92.072501

25. Bürvenich T., Bender M., Maruhn J. A., Reinhard P. -G. Phys. Rev. Ñ 69 (2004) 014307. https://doi.org/10.1103/PhysRevC.69.014307

26. Krappe H. J., Nix J. R., Sierk A. J. Phys. Rev. C 20 (1979) 992. https://doi.org/10.1103/PhysRevC.20.992

27. Strutinski V. M. Nucl. Phys. A 95 (1967) 420; https://doi.org/10.1016/0375-9474(67)90510-6

Nucl. Phys. A 122 (1968) 1. https://doi.org/10.2478/aoj-1968-0021

28. Cwiok S., Dudek J., Nazarewicz W. et al. Comput. Phys. Commun. 46 (1987) 379. https://doi.org/10.1016/0010-4655(87)90093-2

29. Patyk Z., Sobiczewski A. Nucl. Phys. A 533 (1991) 132. https://doi.org/10.1016/0375-9474(91)90823-O

30. Muntian I., Patyk Z., Sobiczewski A. Acta Phys. Pol. B 32 (2001) 691.

31. Audi G., Bersillon O., Blachot J., Wapstra A. H. Nucl. Phys. A 624 (1997) 1. https://doi.org/10.1016/S0375-9474(97)00482-X

32. Muntian I., Patyk Z., Sobiczewski A. Yad. Fiz. 66 (2003) 1051;

Phys. At. Nucl. 66 (2003) 1015. https://doi.org/10.1134/1.1586412

33. Muntian I., Hofmann S., Patyk Z., Sobiczewski A. Acta Phys. Pol. B 34 (2003) 2073.

34. Sobiczewski A., Muntian I. Nucl. Phys. A 734 (2004) 176. https://doi.org/10.1016/j.nuclphysa.2004.01.028

35. Sobiczewski A., Muntian I. Int. J. Mod. Phys. E 14 (2005) 409. https://doi.org/10.1142/S021830130500320X

36. Muntian I., Sobiczewski A. Int. J. Mod. Phys. E 14 (2005) 417. https://doi.org/10.1142/S0218301305003211

37. Sobiczewski A., Kowal M. Phys. Scr. T 215 (2006) (in press).

38. Bjornholm S., Lynn J. E. Rev. Mod. Phys. 52 (1980) 725. https://doi.org/10.1103/RevModPhys.52.725

39. Muntian I., Sobiczewski A. Acta Phys. Pol. B 36 (2005) 1359.

40. Parkhomenko O., Sobiczewski A. Acta Phys. Pol. B 35 (2004) 2447.

41. Parkhomenko A., Sobiczewski A. Int. J. Mod. Phys. E 14 (2005) 421. https://doi.org/10.1142/S0218301305003223

42. Parkhomenko A., Sobiczewski A. Int J. Mod. Phys. E 15 (2006) 457. https://doi.org/10.1142/S0218301306004363

43. Hofmann S. Rep. Prog. Phys. 61 (1998) 639. https://doi.org/10.1088/0034-4885/61/6/002

44. Hofmann S. Acta Phys. Pol. B 30 (1999) 621.

45. Parkhomenko A., Sobiczewski A. Acta Phys. Pol. B 36 (2005) 3095.

46. Audi G., Bersillon O., Blachot J., Wapstra A. H. Nucl. Phys. A 729 (2003) 3. https://doi.org/10.1016/j.nuclphysa.2003.11.001

47. Wapstra A. H., Audi G., Thibault C. Nucl. Phys. A 729 (2003) 129. https://doi.org/10.1016/j.nuclphysa.2003.11.002

48. Viola V. E. Jr., Seaborg G. T., Inorg J. Nucl. Chem. 28 (1966) 741. https://doi.org/10.1016/0022-1902(66)80412-8

49. Böning K., Patyk Z., Sobiczewski A., Cwiok S. Z. Phys. A 325 (1986) 479. https://doi.org/10.1007/BF01290052

50. Sobiczewski A., Patyk Z., Cwiok S. Phys. Lett. B 224 (1989) 1. https://doi.org/10.1016/0370-2693(89)91038-1

51. Lalazissis G. A., Sharma M. M., Ring P., Gambhir Y. K. Nucl. Phys. A 608 (1996) 202. https://doi.org/10.1016/0375-9474(96)00273-4

52. Lojewski Z., Baran A. Z. Phys. A 329 (1988) 161. https://doi.org/10.1007/BF01283771

53. Gambhir Y. K., Bhagwat A., Gupta M., Jain A. K. Phys. Rev. C 68 (2003) 044316. https://doi.org/10.1103/PhysRevC.68.044316

54. Zhang W., Meng J., Zhang S. Q. et al. Nucl. Phys. A 753 (2005) 106. https://doi.org/10.1016/j.nuclphysa.2005.02.086