Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2019, volume 20, issue 4, pages 349-356.
Section: Nuclear Physics.
Received: 24.09.2019; Accepted: 04.12.2019; Published online: 12.03.2020.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2019.04.349

Calculation of the cross-sections of sub-barrier fusion and elastic scattering of heavy ions using the modified Thomas - Fermi approach with the Skyrme force

V. O. Nesterov*, O. I. Davydovska, V. Yu. Denisov

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: v.nest.v@gmail.com

Abstract: The nucleus-nucleus potentials for the 16O + 56Fe and 40Ca + 40Ca reactions are calculated in the framework of the modified Thomas - Fermi method with the Skyrme energy density functional. Using these potentials, the cross-sections of sub-barrier fusion and elastic scattering are obtained, which are in good agreement with the experimental data.

Keywords: nucleus-nucleus interaction potential, modified Thomas - Fermi method, sub-barrier fusion cross-section, elastic scattering.

References:

1. R. Bass. Nuclear Reactions with Heavy Ions (Springer-Verlag, Berlin, 1980) 410 p. https://www.springer.com/gp/book/9783540096115

2. G.R. Satchler. Direct Nuclear Reactions (Clarendon Press, Oxford, 1983) 833 p. Google books

3. P. Frobrich, R. Lipperheide. Theory of Nuclear Reactions (Clarendon Press, Oxford, 1996) 476 p. Google books

4. J. Blocki et al. Proximity forces. Ann. Phys. 105 (1977) 427. https://doi.org/10.1016/0003-4916(77)90249-4

5. W.D. Myers, W.J. Swiatecki. S-nucleus proximity potential and superheavy nuclei. Phys. Rev. C 62 (2000) 044610. https://doi.org/10.1103/PhysRevC.62.044610

6. H.J. Krappe, J.R. Nix, A.J. Sierk. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20 (1979) 992. https://doi.org/10.1103/PhysRevC.20.992

7. A. Winther. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594 (1995) 203. https://doi.org/10.1016/0375-9474(95)00374-A

8. V.Yu. Denisov. Interaction potential between heavy ions. Phys. Lett. B 526 (2002) 315. https://doi.org/10.1016/S0370-2693(01)01513-1

9. V.Yu. Denisov. Nucleus-nucleus potential with shell-correction contribution. Phys. Rev. Ñ 91 (2015) 024603. https://doi.org/10.1103/PhysRevC.91.024603

10. V.Yu. Denisov, W. Norenberg. Entrance channel potentials in the synthesis of the heaviest nuclei. Eur. Phys. J. A 15 (2002) 375. https://doi.org/10.1140/epja/i2002-10039-3

11. V.Yu. Denisov, V.A. Nesterov. Potential of interaction between nuclei and nucleon-density distribution in nuclei. Phys. Atom. Nucl. 69 (2006) 1472. https://doi.org/10.1134/S1063778806090067

12. V.Yu. Denisov. Entrance-channel potentials in synthesis of the heaviest nuclei, muon catalysis of superheavy element formation. Acta Phys. Hung. A 19/1-2 (2004) 121. https://doi.org/10.1556/APH.19.2004.1-2.17

13. V.Yu. Denisov. Superheavy element production, nucleus-nucleus potential and µ -catalysis. AIP Conf. Proc. 704 (2004) 92. https://doi.org/10.1063/1.1737100

14. V.Yu. Denisov, S. Hofmann. Formation of superheavy elements in cold fusion reactions. Phys. Rev. C 61 (2000) 034606. https://doi.org/10.1103/PhysRevC.61.034606

15. G.G. Adamian, N.V. Antonenko, W. Scheid. Isotopic dependence of fusion cross sections in reactions with heavy nuclei. Nucl. Phys. A 678 (2000) 24. https://doi.org/10.1016/S0375-9474(00)00317-1

16. V.I. Zagrebaev. Synthesis of superheavy nuclei: Nucleon collectivization as a mechanism for compound nucleus formation. Phys. Rev. C 64 (2001) 034606. https://doi.org/10.1103/PhysRevC.64.034606

17. Y. Abe et al. Theoretical predictions of residue cross-sections for superheavy elements. Nucl. Phys. A 734 (2004) 168. https://doi.org/10.1016/j.nuclphysa.2004.01.026

18. W.J. Swiatecki, K. Siwek-Wilczynska, J. Wilczynski. Fusion by diffusion. II. Synthesis of transfermium elements in cold fusion reactions. Phys. Rev. C 71 (2005) 014602. https://doi.org/10.1103/PhysRevC.71.014602

19. Y. Aritomo, M. Ohta. Trajectory analysis for fusion path in superheavy-mass region. Nucl. Phys. A 753 (2005) 152. https://doi.org/10.1016/j.nuclphysa.2005.02.122

20. P. Ring, P. Schuck. The Nuclear Many-Body Problem (Springer-Verlag, New York 1980) 718 p. https://www.springer.com/gp/book/9783540212065

21. M. Brack, C. Guet, H.B. Hakanson. Selfconsistent semiclassical description of average nuclear properties – a link between microscopic and macroscopic models. Phys. Rep. 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5

22. M. Brack, R.K. Bhaduri. Semiclassical Physics (Addison-Wesley Publ. Co, Reading, Massachusetts 1997) 462 p. Google books

23. V.M. Strutinskiy, A.G. Magner, V.Yu. Denisov. Density distribution in nuclei. Yadernaya Fizika 42 (1985) 1093 (Rus).

24. V.M. Strutinsky, A.G. Magner, V.Yu. Denisov. Density distribution in nuclei. Z. Phys. A 322 (1985) 149. https://doi.org/10.1007/BF01412028

25. V.Yu. Denysov, V.A. Nesterov. Investigation of spherical nuclei in the framework of the nonlocal modified Thomas - Fermi approximation. Ukrainian Physical Journal 45(10) (2000) 1164 (Ukr) http://archive.ujp.bitp.kiev.ua/files/journals/45/10/45_10_04.pdf

26. V.Yu. Denisov. V.A. Nesterov. Binding energies and density distribution of atomic nuclei in the framework of the nonlocal modified Thomas - Fermi method. Phys. At. Nucl. 65(5) (2002) 814. https://doi.org/10.1134/1.1481472

27. J. Dobaczewski, W. Nazarewicz, P.-G. Reinhard. Pairing interaction and self-consistent densities in neutron-rich nuclei. Nucl. Phys. A 693 (2001) 361. https://doi.org/10.1016/S0375-9474(01)00993-9

28. D. Vautherin, D.M. Brink. Hartree-Fock Calculations with Skyrme’s Interaction. I. Spherical Nuclei. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626

29. J. Bartel et al. Towards a better parametrisation of Skyrme-like effective forces: a critical study of the SkM force. Nucl. Phys. A 386 (1982) 79. https://doi.org/10.1016/0375-9474(82)90403-1

30. S.A. Fayans et al. Nuclear isotope shifts within the local energy density functional approach. Nucl. Phys. A 676 (2000) 49. https://doi.org/10.1016/S0375-9474(00)00192-5

31. J.W. Negele. The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys. 54 (1982) 913. https://doi.org/10.1103/RevModPhys.54.913

32. M. Dasgupta et al. Measuring barriers to fusion. Annu. Rev. Nucl. Part. Sci. 48 (1998) 401. https://doi.org/10.1146/annurev.nucl.48.1.401

33. G. Montagnoli, A.M. Stefanini. Recent experimental results in sub- and near-barrier heavy-ion fusion reactions. Eur. Phys. J. A 53 (2017) 169. https://doi.org/10.1140/epja/i2017-12350-2

34. K. Hagino, N. Rowley, A.T. Kruppa. A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123 (1999) 143. https://doi.org/10.1016/S0010-4655(99)00243-X

35. V.Yu. Denisov. Subbarrier fusion of heavy ions and subbarrier few-nucleon transfers. Fusion of nuclei far from the β-stability line. Phys. At. Nucl. 62 (1999) 1349.

36. V.Yu. Denisov. Subbarrier heavy ion fusion enhanced by nucleon transfer. Eur. Phys. J. A 7 (2000) 87. https://doi.org/10.1007/s100500050015

37. K. Hagino, N. Rowley, M. Dasgupta. Fusion cross sections at deep sub-barrier energies. Phys. Rev. C 67 (2003) 054603. https://doi.org/10.1103/PhysRevC.67.054603

38. D.J. Hinde et al. Influence of Entrance Channel Properties on Heavy-Ion Reaction Dynamics. Eur. Phys. J. A 13 (2002) 149. https://doi.org/10.1140/epja1339-27

39. M. Dasgupta, D.J. Hinde. Importance of entrance channel dynamics on heavy element formation. Nucl. Phys. A 734 (2004) 148. https://doi.org/10.1016/j.nuclphysa.2004.01.023

40. J.O. Newton et al. Systematic failure of the Woods-Saxon nuclear potential to describe both fusion and elastic scattering: Possible need for a new dynamical approach to fusion. Phys. Rev. C 70 (2004) 024605. https://doi.org/10.1103/PhysRevC.70.024605

41. C.R. Morton et al. Coupled-channels analysis of the 16O + 208Pb fusion barrier distribution. Phys. Rev. C 60 (1999) 044608. https://doi.org/10.1103/PhysRevC.60.044608

42. O.I. Davydovska, V.Yu. Denisov, V.A. Nesterov. Comparison of the nucleus-nucleus potential evaluated in the double-folding and energy density approximations and the cross-sections of elastic scattering and fusion of heavy ions. Nucl. Phys. A 989 (2019) 214. https://doi.org/10.1016/j.nuclphysa.2019.06.004

43. B. Pritychenko et al. Tables of E2 transition probabilities from the first 2+ states in even-even nuclei. At. Data Nucl. Data Tabl. 107 (2016) 1. https://doi.org/10.1016/j.adt.2015.10.001

44. T. Kibedi, R.H. Spear. Reduced electric-octupole transition probabilities, B(E3; 0→3) - an update. At. Data Nucl. Data Tabl. 80 (2002) 35. https://doi.org/10.1006/adnd.2001.0871

45. V.Yu. Denisov, V.A. Pluiko. Problems of the Physics of the Atomic Nucleus and Nuclear Reactions (Kyiv: Kyiv University, 2013) 430 p. (Rus) https://inis.iaea.org/collection/NCLCollectionStore/_Public/45/091/45091761.pdf

46. A. Ogloblin et al. New measurement of the refractive, elastic 16O+12C scattering at 132, 170, 200, 230, and 260 MeV incident energies. Phys. Rev. C 62 (2000) 044601. https://doi.org/10.1103/PhysRevC.62.044601

47. Dao T. Khoa et al. Study of diffractive and refractive structure in the elastic 16O + 16O scattering at incident energies ranging from 124 to 1120 MeV. Nucl. Phys. A 672 (2000) 387. https://doi.org/10.1016/S0375-9474(99)00856-8

48. G.F. Bertsch. The collision integral in nuclear matter at zero temperature. Z. Phys A 289 (1978) 103. https://doi.org/10.1007/BF01408501

49. H. Funaki, E. Arai. Anomaly in the 15N, 16O, 19F + 54,56Fe fusion cross sections around the Coulomb barrier energy. Nucl. Phys. A 556 (1993) 307. https://doi.org/10.1016/0375-9474(93)90353-Y

50. G. Montagnoli et al. Fusion of 40Ca + 40Ca and other Ca + Ca systems near and below the barrier. Phys. Rev. C 85 (2012) 024607. https://doi.org/10.1103/PhysRevC.85.024607

51. W. Obst, D.L. McShan, R.H. Davis. Elastic Scattering of 16O by 56Fe, 70,74Ge, and 90Zr. Phys. Rev. C 6 (1972) 1814. https://doi.org/10.1103/PhysRevC.6.1814

52. H. Doubre et al. Elastic scattering of 40Ca by 40Ca. Phys. Rev. C 15 (1977) 693. https://doi.org/10.1103/PhysRevC.15.693