Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2019, volume 20, issue 4, pages 317-348.
Section: Nuclear Physics.
Received: 23.08.2019; Accepted: 4.12.2019; Published online: 12.03.2020.
PDF Full text (en)
https://doi.org/10.15407/jnpae2019.04.317

Improved model-dependent corollary analyses after the first six annual cycles of DAMA/LIBRA-phase2

R. Bernabei1,2,*, P. Belli1,2, F. Cappella3,4, V. Caracciolo5, R. Cerulli1,2, C. J. Dai6, A. d’Angelo3,4, A. Di Marco2, H. L. He6, A. Incicchitti3,4, X. H. Ma6, V. Merlo1,2, F. Montecchia2,7, X. D. Sheng6, Z. P. Ye6,8

1 Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy
2 INFN, sez. Roma "Tor Vergata", Rome, Italy
3 Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy
4 INFN, Sezione di Roma, Rome, Italy
5 INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy
6 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, P.R. China
7 Dipartimento Ingegneria Civile e Ingegneria Informatica, Università di Roma "Tor Vergata", Rome, Italy
8 University of Jinggangshan, Ji'an, Jiangxi, P.R. China


*Corresponding author. E-mail address: rita.bernabei@roma2.infn.it

Abstract: Several of the many proposed Dark Matter candidate particles, already investigated with lower exposure and a higher software energy threshold, are further analyzed including the first DAMA/LIBRA-phase2 data release, with an exposure of 1.13 t×yr and a lower software energy threshold (1 keV). The cumulative exposure above 2 keV considering also DAMA/NaI and DAMA/LIBRA-phase1 results is now 2.46 t×yr. The analysis permits to constrain the parameters' space of the considered candidates restricting their values – with respect to previous analyses – thanks to the increase of the exposure and to the lower energy threshold.

Keywords: Dark Matter, elementary particle processes, scintillation detectors.

References:

1. R. Bernabei et al. Performances of the new high quantum efficiency PMTs in DAMA/LIBRA. J. Instrum. 7 (2012) P03009. https://doi.org/10.1088/1748-0221/7/03/P03009

2. R. Bernabei et al. Dark matter investigation by DAMA at Gran Sasso. Int. J. Mod. Phys. A 28 (2013) 1330022. https://doi.org/10.1142/S0217751X13300226

3. R. Bernabei et al. First Model Independent Results from DAMA/LIBRA-Phase2. Universe 4 (2018) 116. https://doi.org/10.3390/universe4110116

4. R. Bernabei et al. New Model Independent Results From the First Six Full Annual Cycles of DA-MA/LIBRA-phase2. Bled Workshops in Physics 19 n. 2 (2018) 27. http://bsm.fmf.uni-lj.si/bled2018bsm/talks/BledVol19No2proc.pdf

5. R. Bernabei et al. First model independent results from DAMA/LIBRA-phase2. Nucl. Phys. At. Energy 19 (2018) 307. https://doi.org/10.15407/jnpae2018.04.307

6. R. Bernabei et al. First results from DAMA/LIBRA-phase2. Nuclear and Particle Physics Proceed. 303-305 (2018) 74. https://doi.org/10.1016/j.nuclphysbps.2019.03.015

7. R. Bernabei et al. In the Proc. of 15-th Marcel Grossmann Meeting (World Sci., Singapore, 2019).

8. R. Bernabei et al. The DAMA/LIBRA apparatus. Nucl. Instr. Meth. A 592 (2008) 297. https://doi.org/10.1016/j.nima.2008.04.082

9. R. Bernabei et al. First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56 (2008) 333. https://doi.org/10.1140/epjc/s10052-008-0662-y

10. R. Bernabei et al. New results from DAMA/LIBRA. Eur. Phys. J. C 67 (2010) 39. https://doi.org/10.1140/epjc/s10052-010-1303-9

11. R. Bernabei et al. Final model independent result of DAMA/LIBRA-phase1. Eur. Phys. J. C 73 (2013) 2648. https://doi.org/10.1140/epjc/s10052-013-2648-7

12. R. Bernabei et al. No role for muons in the DAMA annual modulation results. Eur. Phys. J. C 72 (2012) 2064. https://doi.org/10.1140/epjc/s10052-012-2064-4

13. R. Bernabei et al. No role for neutrons, muons and solar neutrinos in the DAMA annual modulation results. Eur. Phys. J. C 74 (2014) 3196. https://doi.org/10.1140/epjc/s10052-014-3196-5

14. DAMA coll. issue dedicated to DAMA. Int. J. of Mod. Phys. A 31 (2016) and Refs therein. https://doi.org/10.1142/S0217751X1642001X

15. R. Bernabei el al. Dark matter search. La Rivista del Nuovo Cimento 26(1) (2003) 1 and Refs. therein. https://www.sif.it/riviste/sif/ncr/econtents/2003/026/01

16. R. Bernabei et al. Dark matter particles in the galactic halo: Results and implications from DAMA/NaI. Int. J. Mod. Phys. D 13 (2004) 2127 and Refs. therein. https://doi.org/10.1142/S0218271804006619

17. K.A. Drukier et al. Detecting cold dark-matter candidates. Phys. Rev. D 33 (1986) 3495. https://doi.org/10.1103/PhysRevD.33.3495

18. K. Freese et al. Signal modulation in cold-dark-matter detection. Phys. Rev. D 37 (1988) 3388. https://doi.org/10.1103/PhysRevD.37.3388

19. P. Belli et al. Observations of annual modulation in direct detection of relic particles and light neutrallinos. Phys. Rev. D 84 (2011) 055014. https://doi.org/10.1103/PhysRevD.84.055014

20. A. Addazi et al. DAMA annual modulation effect and asymmetric mirror matter. Eur. Phys. J. C 75 (2015) 400. https://doi.org/10.1140/epjc/s10052-015-3634-z

21. R. Cerulli et al. DAMA annual modulation and mirror dark matter. Eur. Phys. J. C 77 (2017) 83. https://doi.org/10.1140/epjc/s10052-017-4658-3

22. P. Belli et al. Extending the DAMA annual modulation region by inclusion of the uncertainties in astrophysical velocities. Phys. Rev. D 61 (2000) 023512. https://doi.org/10.1103/PhysRevD.61.023512

23. R. Bernabei et al. Investigating the DAMA annual modulation data in the framework of inelastic dark matter. Eur. Phys. J. C 23 (2002) 61. https://doi.org/10.1007/s100520100854

24. P. Belli et al. Effect of the galactic halo modeling on the DAMA-NaI annual modulation result: An extended analysis of the data for weakly interacting massive particles with a purely spin-independent coupling. Phys. Rev. D 66 (2002) 043503. https://doi.org/10.1103/PhysRevD.66.043503

25. R. Bernabei et al. Investigating pseudoscalar and scalar dark matter. Int. J. Mod. Phys. A 21 (2006) 1445. https://doi.org/10.1142/S0217751X06030874

26. R. Bernabei et al. Investigating halo substructures with annual modulation signature. Eur. Phys. J. C 47 (2006) 263. https://doi.org/10.1140/epjc/s2006-02559-9

27. R. Bernabei et al. On electromagnetic contributions in WIMP quests. Int. J. Mod. Phys. A 22 (2007) 3155. https://doi.org/10.1142/S0217751X07037093

28. R. Bernabei et al. Possible implications of the channeling effect in NaI(Tl) crystals. Eur. Phys. J. C 53 (2008) 205. https://doi.org/10.1140/epjc/s10052-007-0479-0

29. R. Bernabei et al. Investigating electron interacting dark matter. Phys. Rev. D 77 (2008) 023506. https://doi.org/10.1103/PhysRevD.77.023506

30. R. Bernabei et al. Investigation on light dark matter. Mod. Phys. Lett. A 23 (2008) 2125. https://doi.org/10.1142/S0217732308027473

31. A.M. Green. Astrophysical uncertainties on the local dark matter distribution and direct detection experiments. J. Phys. G 44 (2017) 084001. https://doi.org/10.1088/1361-6471/aa7819

32. N.W. Evans, C.A.J. O’Hare, C. McCabe. Refinement of the standard halo model for dark matter searches in light of the Gaia Sausage. Phys. Rev. D 99 (2019) 023012. https://doi.org/10.1103/PhysRevD.99.023012

33. A.J. Deason et al. The local high-velocity tail and the Galactic escape speed. Mon. Not. R. Astron. Soc. 485 (2019) 3514. https://doi.org/10.1093/mnras/stz623

34. M.C. Smith et al. The RAVE survey: constraining the local Galactic escape speed. Mon. Not. R. Astron. Soc. 379 (2007) 755. https://doi.org/10.1111/j.1365-2966.2007.11964.x

35. T. Piffl et al. The RAVE survey: the Galactic escape speed and the mass of the Milky Way. Astronomy & Astrophysics 562 (2014) A91. https://doi.org/10.1051/0004-6361/201322531

36. A.A. Williams et al. On the run: mapping the escape speed across the Galaxy with SDSS. Mon. Not. R. Astron. Soc. 468 (2017) 2359. https://doi.org/10.1093/mnras/stx508

37. G. Monari et al. The escape speed curve of the Galaxy obtained from Gaia DR2 implies a heavy Milky Way. Astronomy & Astrophysics 616 (2018) L9. https://doi.org/10.1051/0004-6361/201833748

38. K. Freese et al. Detectability of weakly interacting massive particles in the Sagittarius dwarf tidal stream. Phys. Rev. D 71 (2005) 043516. https://doi.org/10.1103/PhysRevD.71.043516

39. K. Freese et al. Effects of the Sagittarius dwarf tidal stream on dark matter detectors. Phys. Rev. Lett. 92 (2004) 111301. https://doi.org/10.1103/PhysRevLett.92.111301

40. F.S. Ling, P. Sikivie, S. Wick. Diurnal and annual modulation of cold dark matter signals. Phys. Rev. D 70 (2004) 123503. https://doi.org/10.1103/PhysRevD.70.123503

41. P. Gondolo et al. DarkSUSY 4.00 neutralino dark matter made easy. New Astron. Rev. 49 (2005) 193. https://doi.org/10.1016/j.newar.2005.01.009

42. G. Gelmini, P. Gondolo. Weakly interacting massive particle annual modulation with opposite phase in late-infall halo models. Phys. Rev. D 64 (2001) 023504. https://doi.org/10.1103/PhysRevD.64.023504

43. D.N. Spergel, P.J. Steinhardt. Observational Evidence for Self-Interacting Cold Dark Matter. Phys. Rev. Lett. 84 (2000) 3760. https://doi.org/10.1103/PhysRevLett.84.3760

44. B.D. Wandelt et al. Self-Interacting Dark Matter. Proc. 4th Int. Symp. “Sources and Detection of Dark Matter and Dark Energy in the Universe” (Springer, Berlin, 2001) p. 263. https://doi.org/10.1007/978-3-662-04587-9

45. H.W. Joo et al. Quenching factor measurement for NaI(Tl) scintillation crystal. Astropart. Phys. 108 (2019) 50. https://doi.org/10.1016/j.astropartphys.2019.01.001

46. G. Adhikari et al. Initial performance of the COSINE-100 experiment. Eur. Phys. J. C 78 (2018) 107. https://doi.org/10.1140/epjc/s10052-018-5590-x

47. D.R. Tovey et al. Measurement of scintillation efficiencies and pulse-shapes for nuclear recoils in NaI(Tl) and CaF2(Eu) at low energies for dark matter experiments. Phys. Lett. B 433 (1998) 150. https://doi.org/10.1016/S0370-2693(98)00643-1

48. J. Xu et al. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold. Phys. Rev. C 92 (2015) 015807. https://doi.org/10.1103/PhysRevC.92.015807

49. R. Bernabei et al. New limits on WIMP search with large-mass low-radioactivity NaI(Tl) set-up at Gran Sasso. Phys. Lett. B 389 (1996) 757. https://doi.org/10.1016/S0370-2693(96)80020-7

50. V.I. Tretyak. Semi-empirical calculation of quenching factors for ions in scintillators. Astropart. Phys. 33 (2010) 40. https://doi.org/10.1016/j.astropartphys.2009.11.002

51. J.I. Collar. Quenching and channeling of nuclear recoils in NaI(Tl): Implications for dark-matter searches. Phys. Rev. C 88 (2013) 035806. https://doi.org/10.1103/PhysRevC.88.035806

52. S.I. Matyukhin. Critical parameters of channeling. Tech. Phys. 53 (2008) 1578. https://doi.org/10.1134/S1063784208120074

53. N. Bozorgnia et al. Channeling in direct dark matter detection I: channeling fraction in NaI(Tl) crystals. J. Cosmol. Astropart. Phys. 11 (2010) 019. https://doi.org/10.1088/1475-7516/2010/11/019

54. R. Bernabei et al. Investigating the DAMA annual modulation data in a mixed coupling framework. Phys. Lett. B 509 (2001) 197. https://doi.org/10.1016/S0370-2693(01)00493-2

55. G. Prezeau et al. New Contribution to Scattering of Weakly Interacting Massive Particles on Nuclei. Phys. Rev. Lett. 91 (2003) 231301. https://doi.org/10.1103/PhysRevLett.91.231301

56. R.H. Helm. Inelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even Nuclei. Phys. Rev. 104 (1956) 1466. https://doi.org/10.1103/PhysRev.104.1466

57. J.D. Lewin, P.F. Smith. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropart. Phys. 6 (1996) 87. https://doi.org/10.1016/S0927-6505(96)00047-3

58. S. Baum, K. Freese, C. Kelso. Dark Matter implications of DAMA/LIBRA-phase2 results. Phys. Lett. B 789 (2019) 262. https://doi.org/10.1016/j.physletb.2018.12.036

59. S. Kang et al. DAMA/LIBRA-phase2 in WIMP effective models. J. Cosmol. Astropart. Phys. 07 (2018) 016. https://doi.org/10.1088/1475-7516/2018/07/016

60. F. Kahlhoefer et al. Model-independent comparison of annual modulation and total rate with direct detection experiments. J. Cosmol. Astropart. Phys. 05 (2018) 074. https://doi.org/10.1088/1475-7516/2018/05/074

61. D. Smith, N. Weiner. Inelastic dark matter. Phys. Rev. D 64 (2001) 043502. https://doi.org/10.1103/PhysRevD.64.043502

62. D. Tucker-Smith, N. Weiner. Status of inelastic dark matter. Phys. Rev. D 72 (2005) 063509. https://doi.org/10.1103/PhysRevD.72.063509

63. D.P. Finkbeiner et al. Inelastic dark matter and DAMA/LIBRA: An experimentum crucis. Phys. Rev. D 80 (2009) 115008. https://doi.org/10.1103/PhysRevD.80.115008

64. S. Kang et al. Proton-philic spin-dependent inelastic dark matter as a viable explanation of DAMA/LIBRA-phase2. Phys. Rev. D 99 (2019) 023017. https://doi.org/10.1103/PhysRevD.99.023017

65. S. Kang, S. Scopel, G. Tomar. Probing DAMA/LIBRA in the full parameter space of WIMP effective models of inelastic scattering. Phys. Rev. D 99 (2019) 103019. https://doi.org/10.1103/PhysRevD.99.103019

66. S. Chang, R.F. Lang, N. Weiner. Effect of Thallium Impurities in the DAMA Experiment on the Allowed Parameter Space for Inelastic Dark Matter. Phys. Rev. Lett. 106 (2011) 011301. https://doi.org/10.1103/PhysRevLett.106.011301

67. J. Herrero-Garcia et al. Time-dependent rate of multicomponent dark matter: Reproducing the DAMA/LIBRA phase-2 results. Phys. Rev. D 98 (2018) 123007. https://doi.org/10.1103/PhysRevD.98.123007