ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Energy levels of nuclei 40Sc and 40K as a function of semi-classical coupling angle θ1,2 within the modified surface delta-interaction
Dalal Naji Hameed1,*, Ali Khalaf Hasan2
1Department of Physics, College of Science, University of Kufa, Kufa, Iraq
2Department of Physics, College of Education for Girls, University of Kufa, Najaf, Iraq
*Corresponding author. E-mail address:
dalal.alkaraawi@uokufa.edu.iq
Abstract: In this work, nuclear shell model was applied using modified surface delta-interaction to calculate, in particle-hole state, the energy levels of isobar nuclei 40Sc and 40K. Particles are in the model space (1f7/2) while the holes are found in the model space (1d3/2, 1s1/2, 1d5/2). The total angular momentum and parity are identified for possible particles and holes in nuclei above. Thus, we have used a theoretical study to find relationship between energy levels and the semi-classical coupling angle θ1,2 at different orbitals within particle-hole configuration. We notice the energy levels seem to follow two universal functions which depend on the semi-classical coupling angles θ1,2. We found the theoretical data agree to the experimental data.
Keywords: shell model, energy levels, modified surface delta-interaction, 40Sc, 40K, particle-hole.
References:1. A. Heusler, R.V. Jolos, P. von Brentano. Excitation energies of particle-hole states in 208Pb and the surface delta interaction. Phys. At. Nucl. 76 (2013) 807. https://doi.org/10.1134/S1063778813070065
2. I. Talmi. The shell model-successes and limitation. Nucl. Phys. A 507 (1990) 295. https://doi.org/10.1016/0375-9474(90)90585-A
3. R. Arvien, S.A. Moszkowski. Generalized seniority and the surface delta interaction. Phys. Rev. 145 (1966) 831. https://doi.org/10.1103/PhysRev.145.830
4. A. Molinari et al. Effective two-body interaction in simple nuclear spectra. Nucl. Phys. A 239 (1975) 45. https://doi.org/10.1016/0375-9474(75)91132-X
5. P. Van Isacker. Geometry of shell-model matrix elements. EPJ Web Conferences 78 (2014) 03004. https://doi.org/10.1051/epjconf/20147803004
6. P. Van Isacker. A geometry for the shell model. EPJ Web Conferences 178 (2018) 05002. https://doi.org/10.1051/epjconf/201817805002
7. E. Caurier et al. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77 (2005) 427. https://doi.org/10.1103/RevModPhys.77.427
8. J.P. Schiffer. The spectra of near-magic odd-odd nuclei and the effective interaction. Ann. Phys. 66 (1971) 798. https://doi.org/10.1016/0003-4916(71)90082-0
9. D.S. Chuu et al. Shell-model calculations of one-hole states in the nuclei of A = 41 - 43. Phys. Rev. C 27 (1983) 380. https://doi.org/10.1103/PhysRevC.27.380
10. A. Heusler et al. Complete identification of states in 208Pb below Ex = 6.2 MeV. Phys. Rev. C 93 (2016) 054321. https://doi.org/10.1103/PhysRevC.93.054321
11. A. Heusler, R.V. Jolos, P. von Brentano. Description of one-particle one-hole configurations coupled to the 3 yrast state in the doubly magic nucleus 208Pb. Phys. Rev C 99 (2019) 034323. https://doi.org/10.1103/PhysRevC.99.034323
12. A.H. Taqi. Particle-particle and hole-hole random phase approximation calculations for 42Ca and 38Ca. Acta Phys. Pol. B 41 (2010) 1327. http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=1237
13. N.A.F.M. Poppelier, P.W.M. Glaudemans. Particle-hole excitations in the 208Pb mass region. Z. Phys. A 329 (1988) 275. https://doi.org/10.1007/BF01290233
14. F.A. Majeed, R.A. Radhi. Dipole and quadrupole electro excitations of the isovector T = 1 particle-hole states in 12C. Chin. Phys. Lett. 23 (2006) 2699. https://doi.org/10.1088/0256-307X/23/10/021
15. M. Moinester et al. Multipole analysis of particle-particle or particle-hole multiplets. Phys. Rev. 179 (1969) 984. https://doi.org/10.1103/PhysRev.179.984
16. I. Talmi. Simple Models of Complex Nuclei (Switzerland: Harwood Academic Publishers, 1993). Google books
17. P. Johnstone. Effective interaction for one-hole states in K isotopes. Phys. Rev. C 22 (1980) 2561. https://doi.org/10.1103/PhysRevC.22.2561
18. W.W. Daehnick. The residual interaction of bound nucleons-two-nucleon matrix elements deduced from transfer experiments. Phys. Rep. 96 (1983) 317. https://doi.org/10.1016/0370-1573(83)90039-X
19. P.M. Endt. Energy levels of A = 21 - 44 nuclei. Nucl. Phys. A 521 (1990) 1. https://doi.org/10.1016/0375-9474(90)90598-G
20. N. Schulz et al. Identification of particle-hole multiplets in 40Sc. Nucl. Phys. A 162 (1971) 349. https://doi.org/10.1016/0375-9474(71)90989-4
21. V.Y. Hansper et al. Measurement of the 40Ca(3He,t)40Sc reaction. Phys. Rev. C 61 (2000) 028801. https://doi.org/10.1103/PhysRevC.61.028801
22. H.T. Fortune, R. Sherr. 2p3/2 strength in 40,41Sc and the 39Ca(p,γ) reaction rate. Phys. Rev. C 65 (2002) 067301. https://doi.org/10.1103/PhysRevC.65.067301
23. K. Heyde. The Nuclear Shell Model. Study Edition (Berlin: Springer-Verlag, 1994). https://doi.org/10.1007/978-3-642-79052-2
24. S.M. Austin, G.M. Crawlev. The Two-Body Force in Nuclei (London-New York: Plenum Press, 1972). https://doi.org/10.1007/978-1-4684-8337-6
25. R.F. Casten. Nuclear Structure from a Simple Perspective (Oxford: University Press, 1990). Google books
26. J. Suhonen. From Nucleons to Nucleus. Concepts of Microscopic Nuclear Theory (Berlin: Springer, 2007). https://doi.org/10.1007/978-3-540-48861-3
27. A.K. Hasan, A.R.H. Subber. Level structure of 210Po by means of surface delta interaction. Turk. J. Phys. 37 (2013) 348. https://doi.org/10.3906/fiz-1211-15
28. D.N. Hameed, A.K. Hasan. Energy levels of isobaric nuclei (16N, 16F) within the modified surface delta-interaction model. Ukr. J. Phys. 63 (2018) 579. https://doi.org/10.15407/ujpe63.7.579
29. P.J. Brussaard, P.W.M. Glaudemans. Shell-Model Applications in Nuclear Spectroscopy (North-Holland, Amsterdam, 1977). Google books
30. A.E.L. Dieperink et al. An investigation of the odd-parity states of 40Ca with the Tabakin interaction and the MSDI. Nucl. Phys. A 116 (1968) 556. https://doi.org/10.1016/0375-9474(68)90391-6
31. R. Arvien, S.A. Moszkowski. Generalized seniority and the surface delta interaction. Phys. Rev. 145 (1966) 830. https://doi.org/10.1103/PhysRev.145.830
32. R.D. Lawson. Theory of the Nuclear Shell Model (Oxford: Clarendon Press, 1980). Google books
33. P.W.M. Glaudemans et al. Two-body matrix elements from a modified surface delta interaction. Nucl. Phys. A 102 (1967) 593. https://doi.org/10.1016/0375-9474(67)90397-1
34. A. Faessler, A. Plastino. The surface delta interaction in the transuranic nuclei. Zeitschrift fur Physik 203(4) (1967) 333. https://doi.org/10.1007/BF01331060
35. P. van Isacker, A.O. Macchiavelli. Geometry of the shears mechanism in nuclei. Phys. Rev. C 87 (2013) 061301. https://doi.org/10.1103/PhysRevC.87.061301
36. M. Wang et al. The Ame2012 atomic mass evaluation. Chin. Phys. C 36 (2012) 1603. https://doi.org/10.1088/1674-1137/36/12/003
37. M.M. Be et al. Table of radionuclides A = 1 to 150. Monographies BIPM-5. Vol. 1 (2004) 173. https://www.bipm.org/en/publications/scientific-output/monographie-ri-5.html
38. J. Chen. Nuclear Data Sheets for A = 40. Nucl. Data Sheets 140 (2017) 340. https://doi.org/10.1016/j.nds.2017.02.001