ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Properties of the running coupling constant of strong interaction at low energies
V. A. Babenko*, N. M. Petrov
M. M. Bogolyubov Institute of Theoretical Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
*Corresponding author. E-mail address:
pet2@ukr.net
Abstract: Quantum chromodynamics (QCD) running coupling constant αs and its dependence on the energy scale renormalization parameter μ are studied in the energy range of μ ≲ 25 GeV based on the five-loop calculations according to QCD renormalization group equation. Position of the Landau pole μ ≡ Λ = 664.9 MeV of the αs(μ) dependence (QCD scale parameter Λ) is calculated in the five-loop order for the first time. Energy dependence αs(μ) of the running coupling constant in the given energy range is very well described by the proposed simple one-pole formula.
Keywords: quantum chromodynamics (QCD), coupling constant of strong interaction, QCD perturbation theory, renormalization group equation of QCD.
References:1. F.J. Yndurain. The Theory of Quark and Gluon Interactions (Berlin: Springer-Verlag, 2006) 476 p. https://doi.org/10.1007/3-540-33210-3
2. W. Greiner, S. Schramm, E. Stein. Quantum Chromodynamics (Berlin: Springer-Verlag, 2007) 554 p. https://doi.org/10.1007/978-3-540-48535-3
3. M. Tanabashi et al. (Particle Data Group). Review of Particle Physics. Phys. Rev. D 98 (2018) 030001. https://doi.org/10.1103/PhysRevD.98.030001
4. S. Bethke. Determination of the QCD coupling αs. J. Phys. G 26 (2000) R27. https://doi.org/10.1088/0954-3899/26/7/201
5. G.M. Prosperi, M. Raciti, C. Simolo. On the running coupling constant in QCD. Prog. Part. Nucl. Phys. 58 (2007) 387. https://doi.org/10.1016/j.ppnp.2006.09.001
6. A. Deur, S.J. Brodsky, G. de Téramond. The QCD running coupling. Prog. Part. Nucl. Phys. 90 (2016) 1. https://doi.org/10.1016/j.ppnp.2016.04.003
7. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn. Five-loop running of the QCD coupling constant. Phys. Rev. Lett. 118 (2017) 082002. https://doi.org/10.1103/PhysRevLett.118.082002
8. F. Herzog et al. The five-loop beta function of Yang-Mills theory with fermions. J. High Energy Phys. JHEP 02 (2017) 090. https://doi.org/10.1007/JHEP02(2017)090
9. E.C.G. Stueckelberg, A. Petermann. La normalisation des constantes dans la theorie des quanta. Helv. Phys. Acta 26 (1953) 499. Article
10. A. Petermann. Renormalization group and the deep structure of the proton. Phys. Rep. 53 (1979) 157. https://doi.org/10.1016/0370-1573(79)90014-0
11. N.N. Bogoliubov, D.V. Shirkov. Introduction to the Theory of Quantized Fields (New York: Wiley Interscience, 1980) 620 p. Google books
12. D. O’Connor, C.R. Stephens. Renormalization group theory in the new millennium. II. Phys. Rep. 348 (2001) 1. https://doi.org/10.1016/S0370-1573(01)00008-4
13. J. Zinn-Justin. Quantum Field Theory and Critical Phenomena (Oxford: Clarendon Press, 2002) 1054 p. https://doi.org/10.1093/acprof:oso/9780198509233.001.0001
14. M. Gell-Mann, F.E. Low. Quantum electrodynamics at small distances. Phys. Rev. 95 (1954) 1300. https://doi.org/10.1103/PhysRev.95.1300
15. C.G. Callan. Broken scale invariance in scalar field theory. Phys. Rev. D 2 (1970) 1541. https://doi.org/10.1103/PhysRevD.2.1541
16. K. Symanzik. Small distance behavior in field theory and power counting. Comm. Math. Phys. 18 (1970) 227. https://doi.org/10.1007/BF01649434
17. D.J. Gross, F. Wilczek. Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30 (1973) 1343. https://doi.org/10.1103/PhysRevLett.30.1343
18. H.D. Politzer. Reliable perturbative results for strong interactions. Phys. Rev. Lett. 30 (1973) 1346. https://doi.org/10.1103/PhysRevLett.30.1346
19. W.E. Caswell. Asymptotic behavior of non-abelian gauge theories to two-loop order. Phys. Rev. Lett. 33 (1974) 244. https://doi.org/10.1103/PhysRevLett.33.244
20. D.R.T. Jones. Two-loop diagrams in Yang-Mills theory. Nucl. Phys. B 75 (1974) 531. https://doi.org/10.1016/0550-3213(74)90093-5
21. O.V. Tarasov, A.A. Vladimirov, A.Yu. Zharkov. The Gell-Mann-Low function of QCD in the three-loop approximation. Phys. Lett. B 93 (1980) 429. https://doi.org/10.1016/0370-2693(80)90358-5
22. S.A. Larin, J.A.M. Vermaseren. The three-loop QCD β-function and anomalous dimensions. Phys. Lett. B 303 (1993) 334. https://doi.org/10.1016/0370-2693(93)91441-O
23. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin. The four-loop β-function in quantum chromodynamics. Phys. Lett. B 400 (1997) 379. https://doi.org/10.1016/S0370-2693(97)00370-5
24. M. Czakon. The four-loop QCD β-function and anomalous dimensions. Nucl. Phys. B 710 (2005) 485. https://doi.org/10.1016/j.nuclphysb.2005.01.012
25. J. Beringer et al. (Particle Data Group). Review of Particle Physics. Phys. Rev. D 86 (2012) 010001. https://doi.org/10.1103/PhysRevD.86.010001
26. K.A. Olive et al. (Particle Data Group). Review of Particle Physics. Chin. Phys. C 38 (2014) 090001. https://doi.org/10.1088/1674-1137/38/9/090001
27. D. d’Enterria et al. High-precision αs measurements from LHC to FCC-ee. arXiv:1512.05194 [hep-ph]. https://arxiv.org/abs/1512.05194
28. S. Aoki et al. Review of lattice results concerning low-energy particle physics. Eur. Phys. J. C 77 (2017) 112. https://doi.org/10.1140/epjc/s10052-016-4509-7
29. L.D. Landau, A.A. Abrikosov, I.M. Khalatnikov. Asymptotic expression for the photon Green’s function in quantum electrodynamics. Dokl. Akad. Nauk SSSR 95 (1954) 1177. (Rus)
30. L.D. Landau, A.A. Abrikosov, I.M. Khalatnikov. The electron mass in quantum electrodynamics. Dokl. Akad. Nauk SSSR 96 (1954) 261. (Rus)
31. L.D. Landau. On the quantum theory of fields. In: Niels Bohr and the Development of Physics, Ed. W. Pauli (London: Pergamon Press Ltd., 1955) p. 52.
32. K.G. Chetyrkin, J.H. Kühn, M. Steinhauser. RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses. Comp. Phys. Comm. 133 (2000) 43. https://doi.org/10.1016/S0010-4655(00)00155-7
33. Y. Schroder, M. Steinhauser. Four-loop decoupling relations for the strong coupling. J. High Energy Phys. JHEP 01 (2006) 051. https://doi.org/10.1088/1126-6708/2006/01/051
34. K.G. Chetyrkin, J.H. Kuhn, C. Sturm. QCD decoupling at four loops. Nucl. Phys. B 744 (2006) 121. https://doi.org/10.1016/j.nuclphysb.2006.03.020
35. B. Schmidt, M. Steinhauser. CRunDec: A C++ package for running and decoupling of the strong coupling and quark masses. Comp. Phys. Comm. 183 (2012) 1845. https://doi.org/10.1016/j.cpc.2012.03.023
36. F. Herren, M. Steinhauser. Version 3 of RunDec and CRunDec. Comp. Phys. Comm. 224 (2018) 333. https://doi.org/10.1016/j.cpc.2017.11.014
37. N. Zenine. The analytic running coupling of QCD at the two loop level. Proc. of the 3-rd Nucl. and Part. Phys. Conf. NUPPAC-2001, Cairo, Egypt, Oct. 20 - 24, 2001 (Cairo, 2002) p. 140. Proceedings
38. L.B. Okun. Elementary Particle Physics (Moskva: Nauka, 1988) 272 p. (Rus) Google books
39. T. Ericson, W. Weise. Pions and Nuclei (Oxford: Clarendon Press, 1988) 479 p. Google books
40. V.A. Babenko, N.M. Petrov. Study of the charge dependence of the pion-nucleon coupling constant on the basis of data on low-energy nucleon-nucleon interactions. Phys. At. Nucl. 79 (2016) 67. https://doi.org/10.1134/S1063778815090033
41. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser. Strong coupling constant with flavor thresholds at four loops in the modified minimal-subtraction scheme. Phys. Rev. Lett. 79 (1997) 2184. https://doi.org/10.1103/PhysRevLett.79.2184
42. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser. Decoupling relations to O(α3s) and their connection to low-energy theorems. Nucl. Phys. B 510 (1998) 61. https://doi.org/10.1016/S0550-3213(98)81004-3
43. E. Gardi, M. Karliner, G. Grunberg. Can the QCD running coupling have a causal analyticity structure? J. High Energy Phys. JHEP 07 (1998) 007. https://doi.org/10.1088/1126-6708/1998/07/007
44. M. Cini, S. Fubini, A. Stanghellini. Fixed angle dispersion relations for nucleon-nucleon scattering. Phys. Rev. 114 (1959) 1633. https://doi.org/10.1103/PhysRev.114.1633
45. W.T.H. van Oers, J.D. Seagrave. The neutron-deuteron scattering lengths. Phys. Lett. B 24 (1967) 562. https://doi.org/10.1016/0370-2693(67)90389-9
46. V.A. Babenko, N.M. Petrov. Description of the low-energy doublet neutron-deuteron scattering in terms of parameters characterizing bound and virtual triton states. Phys. At. Nucl. 63 (2000) 1709. https://doi.org/10.1134/1.1320139
47. V.A. Babenko, N.M. Petrov. Description of scattering and of a bound state in the two-nucleon system on the basis of the Bargmann representation of the S matrix. Phys. At. Nucl. 68 (2005) 219. https://doi.org/10.1134/1.1866377
48. J. Ellis, M. Karliner. Determination of αs and the nucleon spin decomposition using recent polarized structure function data. Phys. Lett. B 341 (1995) 397. https://doi.org/10.1016/0370-2693(95)80021-O
49. A.A. Penin, A.A. Pivovarov. Next-to-next-to-leading order vacuum polarization function of heavy quark near threshold and sum rules for bb‾ system. Phys. Lett. B 435 (1998) 413. https://doi.org/10.1016/S0370-2693(98)00803-X
50. S. Bethke. αs at Zinnowitz 2004. Nucl. Phys. B (Proc. Suppl.) 135 (2004) 345. https://doi.org/10.1016/j.nuclphysbps.2004.09.020
51. C.T.H. Davies et al. Update: accurate determinations of αs from realistic lattice QCD. Phys. Rev. D 78 (2008) 114507. https://doi.org/10.1103/PhysRevD.78.114507
52. S. Bethke. The 2009 world average of αs. Eur. Phys. J. C 64 (2009) 689. https://doi.org/10.1140/epjc/s10052-009-1173-1
53. N. Brambilla et al. Extraction of αs from radiative ϒ(1S) decays. Phys. Rev. D 75 (2007) 074014. https://doi.org/10.1103/PhysRevD.75.074014
54. P.A. Movilla Fernandez. Determinations of αs at √s = 14 to 44 GeV using resummed calculations. arXiv:0205014 [hep-ex]. https://arxiv.org/abs/hep-ex/0205014
55. S. Bethke. αs 2016. Nucl. Part. Phys. Proc. 282-284 (2017) 149. https://doi.org/10.1016/j.nuclphysbps.2016.12.028
56. A. Pich. Precision physics with QCD. EPJ Web of Conferences 137 (2017) 01016. https://doi.org/10.1051/epjconf/201713701016
57. K.G. Chetyrkin, J.H. Kuhn, A. Kwiatkowski. QCD corrections to the e+e- cross-section and the Z boson decay rate: concepts and results. Phys. Rep. 277 (1996) 189. https://doi.org/10.1016/S0370-1573(96)00012-9
58. P.A. Baikov et al. Adler function, sum rules and Crewther relation of order O(α4s): The singlet case. Phys. Lett. B 714 (2012) 62. https://doi.org/10.1016/j.physletb.2012.06.052
59. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn. Order α4s QCD corrections to Z and τ decays. Phys. Rev. Lett. 101 (2008) 012002. https://doi.org/10.1103/PhysRevLett.101.012002
60. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn. Scalar correlator at O(α4s), Higgs boson decay into bottom quarks, and bounds on the light-quark masses. Phys. Rev. Lett. 96 (2006) 012003. https://doi.org/10.1103/PhysRevLett.96.012003
61. F. Rellich. Perturbation Theory of Eigenvalue Problems (New York: Gordon and Breach, 1969) 127 p. Google books
62. K.O. Friedrichs. Perturbation of Spectra in Hilbert Space (Providence: Am. Math. Soc., 1965) 178 p. Google books
63. T. Kato. Perturbation Theory for Linear Operators (Berlin: Springer-Verlag, 1995) 619 p. https://doi.org/10.1007/978-3-642-66282-9
64. M. Reed, B. Simon. Methods of Modern Mathematical Physics. Vol. 4 (New York: Academic Press, 1978) 325 p.
65. B. Simon. Large orders and summability of eigenvalue perturbation theory: a mathematical overview. Int. J. Quant. Chem. 21 (1982) 3. https://doi.org/10.1002/qua.560210103
66. B. Simon. Fifty years of eigenvalue perturbation theory. Bull. Am. Math. Soc. 24 (1991) 303. https://doi.org/10.1090/S0273-0979-1991-16020-9
67. E.J. Weniger. A convergent renormalized strong coupling perturbation expansion for the ground state energy of the quartic, sextic, and octic anharmonic oscillator. Ann. Phys. 246 (1996) 133. https://doi.org/10.1006/aphy.1996.0023