![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Dependence of the defect introduction rate on irradiation dose of p-Si by fast-pile neutrons
A. P. Dolgolenko, M. D. Varentsov, G. P. Gaidar, P. G. Litovchenko
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: It has been studied the high-resistance samples of p-Si (р00 = (3.3 ± 0.5) · 1012 cm-3) and n-Si (n0 = (2.0 ± 0.3) · 1012 cm-3), grown by the floating-zone technique, after irradiation by the fast-pile neutrons at 287 К. The dose and temperature dependences of the effective concentration of carriers have been measured. Calculation has been carried out in the framework of Gossick's corrected model. It was shown that the radiation hardness of n- and p-Si is defined, on one hand, by clusters, on the other hand - by the vacancy defects (acceptors) in n-Si and by interstitial defects (donors and acceptors) in p-Si. It was determined that during the irradiation process of p-Si by small doses of neutrons the change of charge state of interstitial defects leads to the annealing of these defects and to decrease of their introduction rate.
References:1. Старостин К. Л. Температурная зависимость скорости уменьшения концентрации электронов в n-Ge и n-Si при облучении быстрыми нейтронами. Физика и техника полупроводников 4 (1970) 1823.
2. Карумидзе Г. С. Влияние температуры облучения нейтронами на формирование дефектов структуры в кремнии, выращенном методом Чохральского. Физика и техника полупроводников 24 (1990) 1973.
3. Долголенко А. П., Литовченко П. Г., Варенцов М. Д. и др. Особенности образования радиационных дефектов в кремнии с низкой и высокой концентрацией свободного кислорода. Зб. наук. праць Ін-ту ядерних досл. 6 (2005) 106. https://jnpae.kinr.kyiv.ua/06.2/Articles_PDF/jnpae-2005-06-2-106.pdf
4. Gossick B. R. Disordered Regions in Semiconductors Bombarded by Fast Neutrons. J. Appl. Phys. 30 (1959) 1214. https://doi.org/10.1063/1.1735295
5. Dolgolenko A. P., Fishchuk I. I. A-Centres Build-Up Kinetics in the Conductive Matrix of Pulled n-Type Silicon with Calculation of Their Recharges at Defect Clusters. phys. stat. sol. (a) 67 (1981) 407. https://doi.org/10.1002/pssa.2210670207
6. Kaminski P., Kozlowski R., Nossarzewska-Orlowska E. Formation of electrically active defects in neutron irradiated silicon. Nucl. Instrum. Methods Phys. Res. B 186 (2002) 152; https://doi.org/10.1016/S0168-583X(01)00889-8
High-resolution photoinduced transient spectroscopy of neutron irradiated bulk silicon. Nucl. Instrum. Methods Phys. Res. A 476 (2002) 639. https://doi.org/10.1016/S0168-9002(01)01652-7
7. Pintilie I., Tivarus C., Pintilie L. et al. Thermally stimulated current method applied to highly irradiated silicon diodes. Nucl. Instrum. Methods Phys. Res. A 476 (2002) 652. https://doi.org/10.1016/S0168-9002(01)01654-0
8. Dolgolenko A. P., Litovchenko P. G., Varentsov M. D. et al. Particularities of the formation of radiation defects in silicon with low and high concentration of oxygen. phys. stat. sol. (b) 243 (2006) 1842. https://doi.org/10.1002/pssb.200541074
9. Ewels C. P., Jones R., Oberg S. et al. Shallow Thermal Donor Defects in Silicon. Phys. Rev. Lett. 77 (1996) 865. https://doi.org/10.1103/PhysRevLett.77.865
10. Konozenko I. D., Semenyuk A. K., Khivrich V. I. Radiation Defects Created by 60Co γ-Rays in p- and n-type Si of High-Purity. phys. stat. sol. 35 (1969) 1043; https://doi.org/10.1002/pssb.19690350257
Radiation Defects in Si of High Purity. Radiation Effects 8 (1971) 121. https://doi.org/10.1080/00337577108231017
11. Lee Y. -H., Gerasimenko N. N., Corbett J. W. EPR study of neutron-irradiated silicon: A positive charge state of the <100> split di-interstitisal. Phys. Rev. B 14 (1976) 4506. https://doi.org/10.1103/PhysRevB.14.4506