![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Bulk and surface symmetry energy for the nuclei far from the valley of stability
V. M. Kolomietz, A. I. Sanzhur
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: The direct variational method have been applied to the calculation of the symmetry energy for medium and heavy nuclei. The functional of energy of the Thomas-Fermi approximation with the effective Skyrme forces have been used. The behavior of the bulk and the surface symmetry energy as the function of the bulk nucleon density ρq,0 and the neutron excess have been studied for the various sets of Skyrme forces. We have calculated the average number of neutrons in the surface region, Nd, for the nuclei at the line of β-stability and the dependence of Nd on the nucleon density ρq,0 and on the remoteness from the line of β-stability.
References:1. Бор О., Моттельсон Б. Структура атомного ядра. T. 1 (Mосква: Мир, 1971) 456 c.
2. Ring P., Schuck Р. The Nuclear Many-Body Problem (Berlin: Springer, 1980) 711 p.
3. Коломиец В. М. Приближение локальной плотности в атомной и ядерной физике (Київ: Наук. думка, 1990) 164 с.
4. Бор О., Моттельсон Б. Структура атомного ядра. T. 2, (Mосква: Мир, 1977) 664 c.
5. Myers W. D., Swiatecki W. J. Average nuclear properties. Ann. of. Phys. 55 (1969) 395. https://doi.org/10.1016/0003-4916(69)90202-4
6. Tsang M. B., Gelbke C. K., Liu X. D. et al. Isoscaling in statistical models. Phys. Rev. C 64 (2001) 054615. https://doi.org/10.1103/PhysRevC.64.054615
7. Ono A., Danielewicz P., Friedman W. A. et al. Isospin fractionation and isoscaling in dynamical simulations of nuclear collisions. Phys. Rev. C 68 (2003) 051601(R). https://doi.org/10.1103/PhysRevC.68.051601
8. Natowitz J. B., Hagel K., Wada R. et al. Limiting temperatures of neutron rich nuclei: A possible interpretation of data from isotope yield ratios. Phys. Rev. C 52 (1995) R2322(R). https://doi.org/10.1103/PhysRevC.52.R2322
9. Cibor J., Wada R., Hagel K. et al. Dynamic evolution and the caloric curve for medium mass nuclei. Phys. Lett. B 473 (2000) 29. https://doi.org/10.1016/S0370-2693(99)01457-4
10. Veselsky M., Ibbotson R. W., Laforest R. et al. Isospin dependence of ratio Y(3(H))/Y(3He) and its relation to temperature. Phys. Lett. B 497 (2001) 1. https://doi.org/10.1016/S0370-2693(00)01318-6
11. Friedman W. A. Rapid massive cluster formation. Phys. Rev. C 42 (1990) 667. https://doi.org/10.1103/PhysRevC.42.667
12. Xu H. S., Tsang M. B., Liu T. X. et al. Isospin Fractionation in Nuclear Multifragmentation. Phys. Rev. Lett. 85 (2000) 716. https://doi.org/10.1103/PhysRevLett.85.716
13. Viola V. E. The nuclear liquid-gas phase transition: Q.E.D. Nucl. Phys. A 734 (2004) 487. https://doi.org/10.1016/j.nuclphysa.2004.01.091
14. Myers W. D., Swiatecki W. J. Nuclear equation of state. Phys. Rev. C 57 (1998) 3020. https://doi.org/10.1103/PhysRevC.57.3020
15. Myers W. D., Swiatecki W. J. Isospin dependence of the nuclear surface tension. Phys. Rev. C 63 (2001) 034318. https://doi.org/10.1103/PhysRevC.63.034318
16. Bohigas O., Campi X., Krivine H., Treiner J. Extensions of the Thomas-Fermi approximation for finite nuclei. Phys. Lett. B 64 (1976) 381. https://doi.org/10.1016/0370-2693(76)90101-5
17. Коломиец В. М., Офенгенден С. Р., Цехмистренко И. Ю. Расчет равновесных характеристик ядер, основанный на модифицированном приближении Томаса-Ферми. Ядерная физ. 39 (1984) 1356.
18. Brack M., Guet C., Håkansson H. -B. Selfconsistent semiclassical description of average nuclear properties - a link between microscopic and macroscopic models. Phys. Rep. 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5
19. Uma Maheswari V. S., Ramamurthy V. S., Satpathy L. Analysis of the compressibility of a finite symmetrical nucleus in terms of a simple, analytically tractable model. Phys. Rev. C 46 (1992) 2305. https://doi.org/10.1103/PhysRevC.46.2305
20. Ravenhall D. G., Pethick C. J., Lattimer J. M. Nuclear interface energy at finite temperatures. Nucl. Phys. A 407 (1983) 571. https://doi.org/10.1016/0375-9474(83)90667-X
21. Liu K. -F., Luo H., Ma Z. et al. Skyrme-Landau parameterization of effective interactions (I). Hartree-Fock ground states. Nucl. Phys. A 534 (1991) 1. https://doi.org/10.1016/0375-9474(91)90555-K
22. Chabanat E., Bonche P., Haensel P. et al. A Skyrme parametrization from subnuclear to neutron star densities. Nucl. Phys. A 627 (1997) 710. https://doi.org/10.1016/S0375-9474(97)00596-4
23. Chung K. C., Wang C. S., Santiago A. J., Zhang J. W. Effective nucleon-nucleon interactions and nuclear matter equation of state. Eur. Phys. J. A 10 (2001) 27. https://doi.org/10.1007/s100500170141
24. Treiner J., Krivine H., Bohigas O. Nuclear incompressibility: From finite nuclei to nuclear matter. Nucl. Phys. A 371 (1981) 253. https://doi.org/10.1016/0375-9474(81)90067-1