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A hyperspherical adiabatic approach (HAA) has been suggested to find the energy spectrum of even-even atomic 

nuclei modelled by a spherically symmetric even-even core plus two valence nucleons in the external shell. The 
adiabatic three-particle model of nucleus for the case of the spherically symmetric and axially symmetric nucleus has 
been obtained. The so-called adiabatic three-particle model is based on the assumption on the separability of the motion 
of valence nucleons into the high-speed motion of nucleons over the angular variables and the adiabatic (slow-speed) 
motion of nucleons along the hyperradius R. The efficiency of the adiabatic approach is illustrated by the example of 
the numerical calculations of the energy spectrum of low-lying excited states of the even-even atomic nuclei 6He, 10Be, 
14C, 16C, 18O, 18Ne, 42Ca, and 58Ni, which possess two valence nucleons in the shell. 

 
1. Introduction 

 
The difficulties of the mathematical character, 

which arise in a process of the solution of the 
Schrodinger equation for stationary states of atomic 
nuclei, stimulates us to search the different 
approximate methods and the model approaches of 
its solution. The most familiar of them are: the shell 
model [1], the Hartree - Fock method [2], the 
superfluid nuclei model [3], the K-harmonic method 
[4], the interacting bosons model [5], the unitary 
correlation operator method (UCOM) [6], the Monte 
Carlo shell model [7] and others. It is well known 
that each of these methods has its characteristic 
advantages and accordingly some limitations. 

The angular and radial correlations of nucleons 
and the pairing effects for nucleons of the same sort 
play an important role in the formation of excited 
states of nuclei and appear, particularly, in the 
presence of gaps in the energy spectra of excited 
states of even-even nuclei and in their absence in the 
spectra of odd and odd-odd nuclei. Thus, it is 
necessary to develop another method for the 
calculation of the wave functions and the energy 
spectra of stationary states of even-even nuclei, 
which would go beyond the limits of the one-
nucleon Hartree - Fock approach [2]. As it is known 
the pair correlations of nucleons of the same sort, 
which result particularly in the existence of 
superfluid states of nuclei [8], are considered most 
logically and correctly in the superfluid model of 
nucleus [9, 10] within the secondary quantization 
formalism. 

In the present paper, we suggest to consider the 
pair correlations between nucleons in the potential 
approach in the framework of the adiabatic three-
particle model of nuclei [11 - 14], based on the 
assumption of separability of the motion of valence 
nucleons of a nucleus into the high-speed movement 
in angular variables, i.e. on the sphere 5( )S Ω  and 

the adiabatic (low-speed) movement of nucleons 
along the hyperradius R and on the introduction of 
the notion of adiabatic potential term of nucleons 

( )U Rµ  which is convenient for the description. We 
recall that the adiabatic three-particle model of 
nuclei is based on the assumption of the existence of 
an average self-consistent field in the model of 
independent particles with taking into account a 
short-range residual interaction of valence nucleons. 

The further development and application of the 
adiabatic approach in nuclear theory to the 
investigation of the energy spectrum of both 
spherical and deformed even-even nuclei within the 
framework of the adiabatic three-particle model of 
nuclei and with consideration of the Coulomb 
interaction between valence protons besides the 
strong one are considered to be topical now. 

 
2. Description of the Energy Spectrum of 
Stationary States of a Spherical Nucleus 

 
A theoretical description of the energy spectrum 

of excited states of nuclei, which are modelled by a 
spherically symmetric even-even "core" plus two 
nucleons on the outer unfilled shell, was carried out 
in [11 - 14] within the HAA method. For the XA

Z  
nucleus with two valence nucleons, the description 
of nucleus in HAA method is carried out in terms of 
collective variables, whose role is played by the 
hyperradius R , hyperangle α  

 
2 2 1/ 2

1 2( )R r r= + ,     2 1arctg( / )r rα =          (1) 
 

and usual spherical angles ˆ { , }i i ir ϕ θ= , 1,2i = . 
In the adiabatic three-particle model of nuclei, 

the effective self-consistent field is modelled by the 
static spherically symmetric Woods - Saxon 
potential [15] 
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1,2i = ,                              (2) 

 

where 1 3
0 0R r A=  and the projection of isotopic spin 

1 2zt = ± : "-" should be taken for a proton and "+" 
for a neutron. 

If there are two valence protons on the external 
shell, then the Coulomb potential kV  can be 
modelled, for the sake of simplicity, as [15] 
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Here, ( )k iV r  is the potential energy of interaction 
between the i-th proton and the Coulomb field of the 
uniformly charged sphere. 

For the simplification of further calculations, we 
can represent the residual strong interaction of 
valence nucleons between themselves as the 
potential with zero interaction radius with regard to 
the repulsion of nucleons at short distances [15] 

 

1 2
res 1 2 12 1 2( , ) )[1 ( )] (

2
r rV r r r rV gρ δ+= − − − .     (5) 

 

The repulsion of nucleons is characterized by the 

term 1 2

2
( )r rρ +  which denotes the total one-particle 

density of nucleons. The relative contribution of 
repulsion is defined by the g  ( )0g > . Such a 
choice of the residual interaction simplifies the 
algorithm of the energy spectrum computation, 
because it allows one to calculate, in the explicit 
analytic form, the matrix elements of this interaction 
and does not distort, possibly, the real situation. In 
the future, more realistic models of the interaction 
should be developed. 

In the case of valence protons, their Coulomb 
interaction 

 
2

12
1 2

k
eV

r r
=

−
                          (6) 

 

must be added to (5). 
The spin-orbital interaction of the i-th nucleon is 

given by 

1 ( )( ) ( )( ), ( )
i i

i i
l s i i i i i i i

i i

U rV r W r l s W r
r r
∂χ
∂

= ⋅ = − ,  

 
1,2i = .                            (7) 

 
Thus, in the framework of the adiabatic three-

particle model of nuclei in terms of collective 
variables (1), the potential energy ( ),V R Ω  of the 
system under study is given by 

 

( ) ( ) ( ) ( )1 1 1 1, cos cosV R U R W R l sΩ α α= + ⋅ +  
 

( ) ( ) ( )2 2 2 2 res 12sin sin .kU R W R l s V Vα α+ + ⋅ + +  (8) 
 
We note that using the Hamiltonian with central 

two-particle and spin-orbital one-particle 
interactions for a spherical nucleus corresponds to 
the so-called intermediate coupling approximation. 

As was shown in works [11 - 14], the problem of 
determination of the energy spectrum for spherical 
atomic nuclei in the framework of the adiabatic 
three-particle model of nuclei is reduced to solving 
the two following problems. 

In the first place, it is the problem of 
determination of adiabatic potential terms ( )U Rµ  of 
nucleons of the nucleus and the corresponding basis 
functions ( ),RµΦ Ω . This can be done by a 
numerical solution of the system of differential 
equations for the variable α  ( 1Nm= = ), 

 

1 2 1 2

2
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where the coefficients 
1 2 1 2

( ) ( , )j j l l RµΦ α  which appear in 

the decomposition [11] of the ( ),RµΦ Ω  
 

1 2 1 2 1 2 1 2

( ) ( )( , ) sin cos  ( , )j j l l j j l lR Rµ µϕ α α α Φ α= .    (10) 
 

System (9) is supplemented by the boundary 
conditions that ensure a boundedness of the function 

),( αϕµ R  at zero and the validity of the Pauli 
principle: 

 

1 2 1 2
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Thus, we can find the adiabatic terms ( )U Rµ  

and basis functions ( ),RµΦ Ω  by solving system 
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(9) with boundary conditions (11). The expansion of 
the full wave function of the system ( , )RΨ Ω  in the 
hyperspherical adiabatic basis { ( , )}RµΦ Ω  looks 
 

5 / 2( , ) ( ) ( , )R R F R Rµ µ
µ

Ψ Ω Φ Ω−= ∑ .      (12) 

 

Secondly, we must determine the radial functions 
( )F Rµ  and the energy spectrum E  of bound states 

of nucleons through a numerical solution of the 
system of differential equations for the variable R

( )
2

2 2

1 ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) 0.
4

d d dU R E F R H R F R Q R F R Q R F R
dR R dR dRµ µ µµ µ µµ µ µµ µ

µ
′ ′ ′ ′ ′ ′

′

⎧ ⎫ ⎧ ⎫⎡ ⎤− − + − + + + =⎨ ⎬ ⎨ ⎬⎣ ⎦⎩ ⎭⎩ ⎭
∑  (13) 

 

The radial functions ( )F Rµ  satisfy the boundary 
conditions 

 

(0) ( ) 0F Fµ µ= ∞ = .               (14) 
 

In numerical calculations, we substitute the 
interval ( ]0,∞  of R  by a finite interval [ ]max0, R  
and truncate system (13) to that with a finite number 
of equations. Using the adiabatic approximation, in 
which expansion (12) contains only diagonal matrix 
elements, reduces system (13) to a single equation. 

The explicit form of potentials (2) - (7) is given 
in [12, 13]. 

The efficiency of the HAA method in the 
framework of the adiabatic three-particle model of 
nuclei has been illustrated by the example of 
numerical calculations of the energy spectra of even-
even nuclei under assumption of spherical symmetry 
of the field of nucleus. The calculated energies of 
excited states of nucleons for the certain studied 
nuclei indicate the necessity to take into account the 
polarization effects for the even-even core, i.e. to 
consider a deformation of the core field by nucleons 
from the external unfilled shell. 

 
3. Description of the Energy Spectrum of 
Stationary States of a Deformed Nucleus 

 
In the calculations of stationary states of 

deformed nuclei, the Nilsson potential was used for 
a long time as an effective potential of the average 
nuclear field of a core [16]. With the help of the 
Nilsson potential, a rather simple scheme for the 
determination of the one-particle levels and 
corresponding wave functions of states of deformed 
nuclei was developed. However, the Nilsson 
potential has a number of essential limitations. For 
example, it has infinite depth, which yields the 
improper behaviour of wave functions on the 
nucleus boundary and outside it. Moreover, the spin-
orbital interaction in the Nilsson's scheme is 
independent of the mass number A  and the 
deformation parameters. 

Therefore, a more realistic finite anisotropic 
Woods - Saxon potential becomes recently to be 
widely used in calculations of the energy spectrum 

of deformed nuclei [17, 18]. For the first time, the 
problem of determination of one-particle levels and 
wave functions of states in a deformed Woods - 
Saxon potential was investigated by Nemirovskii 
and Chepurnov in [17]. Later on, other methods of 
solving the Schrodinger equation with anisotropic 
Woods - Saxon potential were proposed in the one-
particle approximation [18]. 

It is necessary to note that the integral of motion 
for deformed nuclei with the form of an ellipsoid of 
revolution is the projection K  of the total angular 
momentum of a nucleon on the nucleus symmetry 
axis, i.e. one-particle nucleon states are 
characterized by energy, parity, and projection K . 

In the adiabatic three-particle model of nuclei, 
the stationary states of two valence nucleons in the 
deformed nucleus field, which is simulated by the 
anisotropic Woods - Saxon potential, are determined 
[19] from the Schrodinger’s equation 

 
2 2

1 2
1 2

ˆ( ) 0
2 2

V E∆ ∆ Ψ
µ µ

− − + − = ,        (15) 

 
where the potential energy operator of the system is 
given by 

 

1 1 1 1 2 2( , ) ( , , ) ( , )soV U r V r U rβ σ β β= + + +  
 

2 2 res 1 2 12 1 2( , , ) ( , ) ( , )so kV r V r r V r rσ β+ + + .       (16) 
 

Here, ( ),i iU r β  is purely the nuclear potential 
energy of the i-th nucleon at the point ir  in the 
deformed axially symmetric Woods - Saxon field: 

 

0 1( ) 2i i z
N ZU r V V t
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−
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. (17) 

 
The radius ( , )iR θ β  of the deformed axially 

symmetric field of a nucleus depends on the 
deformation parameter β  and the angle iθ  relative 
to the symmetry axis of a nucleus and is chosen as 
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0 20( , ) [1 ( )]i iR R Yθ β β θ= + .               (18) 
 
As is well known, spin-orbital interaction 

operators in the case of the nuclear potential 
( , )i iU r β  have the form [17] 

 

( , , ) [ ] grad ( , )so i i i i i iV r p U rσ β χ σ β= − × ⋅ .  (19) 
 

In (15), we separate the spherically symmetric 
part of interaction and the additional term which sets 
a deviation of the interaction symmetry from the 
spherical one. As a result, we obtain the equation 

2 2

1 2 1 1 2 2 1 1 2 2 1 1 2 2 res 1 2
1 2

( ( , , , , ) ( , , , , 0) ( , , , , 0) ( , ) ) 0.
2 2

V r r V r r V r r V r r E∆ ∆ σ σ β σ σ β σ σ β Ψ
µ µ

− − + − = + = + − =     (20) 

 
It is convenient to seek for solutions of Eq. (20) 

in hyperspherical coordinates (1) in the form of a 
superposition of solutions nJKΨ , 

 

( , ) ( , )K nJK nJK
n J

R C RΨ Ω Ψ Ω=∑ ∑ ,         (21) 

 
of the stationary Schrodinger’s equation 

 
2 2

1 2 1 1 2 2
1 2

( ( , , , , 0)
2 2

V r r∆ ∆ σ σ β
µ µ

− − + = +  

 

res 1 2( , ) ) 0nJ nJKV r r ε Ψ+ − =             (22) 
 

with the spherically symmetric potential 
1 1 2 2( , , , , 0)V r rσ σ β = . 
The stationary states 
 

( , ) ( ) ( , )nJK nJK nJK nJKR F R RΨ Ψ Ω Φ Ω≡ =    (23) 
 

of the corresponding spherical nucleus can be 
obtained from (22) according to the scheme 
introduced in [11 - 14] and briefly given in Section 2. 

After the substitution of (21) to (20), 
multiplication of all terms of the equation by 

( , )
n J K

RΨ Ω∗

′ ′ ′
, and integration over the whole region 

of hyperspherical coordinates, we obtain 
 

( )nJ nJK nn JJ
n J

E Cε δ δ′ ′− +∑ ∑  

 

1 1 2 2( , , , , ) 0,nJK n J K nJK
n J

C V r rΨ σ σ β Ψ′ ′ ′+ =∑∑  (24) 

 
where 

 

1 1 2 2 1 1 2 2( , , , , ) ( , , , , )V r r V r rσ σ β σ σ β= −  
 

1 1 2 2( , , , , 0)V r rσ σ β− = =  
 

2

1

[ ( , ) ( , , )],i i iso i i
i

U r V rβ σ β
=

= +∑            (25) 

 

( , ) ( , ) ( , 0),i i i i i iU r U r U rβ β β= − =         (26) 
 

( , , ) ( , , ) ( , , 0). iso i i iso i i iso i iV r V r V rσ β σ β σ β= − =  (27) 

We can represent the spin-orbital addition 
1 1 2 2( , , , , )soV r rσ σ β  (27) in potential (25) as [17, 18] 

 

1 1 2 2 1 2 3( , , , , )soV r r W W Wσ σ β = + + ,     (28) 
 

where 
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and 

ir
i

p i
r
∂

= −
∂

, 
i

i

p iθ θ
∂

= −
∂

, 
i

i

p iϕ ϕ
∂

= −
∂

.   (32) 

 
In (29) - (31), , ,

i i ir θ ϕσ σ σ  is the Pauli matrices 
which are given explicitly in [17]. 

In order to solve the system of equations (24) 
numerically, we need to know the matrix elements 
of the potentials of both purely nuclear and spin-
orbital interactions. 

For the determination of matrix elements in (24), 
it is convenient to expand 1 1 2 2( , , , , )V r rσ σ β  in a 
series in terms of spherical functions. For the nuclear 
terms of potential (25), we obtain 

 

( , ) ( , , ) ( , )
i i i i

i i

i i m i m i i
m

U r A r Yλ λ
λ

β α β θ ϕ= ∑ .    (33) 

 
Respectively 
 

( , ) ( , , ) ( , )
i i i i

i i

i i
m i m i i

mi

U r B r Y
r λ λ

λ

β α β θ ϕ∂
=

∂ ∑ .  (34) 

 
where the expansion coefficients ( , , )

i im iA rλ α β  and 
( , , )

i im iB rλ α β  should be obtained numerically. In the 
examined case of an axisymmetric nucleus, 

1 2 0m m= = . 
The system of homogeneous equations (24) has 

nonzero solutions if the determinant composed from 
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the coefficients of the unknowns nJKC  equals zero. 
Expanding this determinant, we obtain an algebraic 
equation for the determination of E . 

By solving system (24) in the standard way, we 
can find the energy spectrum E  of the deformed 
nucleus, coefficients nJKC , and, hence, the 
corresponding wave functions of stationary states of 
the deformed nucleus. We can obtain the unknown 
energy E  of the deformed nucleus for 1β <<  by 
the method of perturbation theory with respect to the 
deformation parameter β . 

For the case of minor deformations 1β << , we 
can consider the operator 1 1 2 2( , , , , )V r rσ σ β  in Eq. 
(24) as an operator of perturbation which represents 
the difference between a weakly deformed Woods - 
Saxon potential with deformation parameter 1β <<  
and a spherical Woods - Saxon potential. The energy 
of an arbitrary level nJKE  of a deformed nucleus in 
the first approximation of perturbation theory is 
given by 

 
( )1

,nJK nJ nJK nJKE E Vε= = + ,               (35) 
 

where nJε  is the energy of the j-th level of a 
spherically symmetric nucleus and ,nJK nJKV  is the 
unknown matrix element of the operator 

1 1 2 2( , , , , )V r rσ σ β . The explicit type of matrix 
elements ,nJK nJKV  (35) of the operator 

1 1 2 2( , , , , )V r rσ σ β  was given in [19]. 
As it is seen from formula (35), due to the axial 

symmetry of the Woods - Saxon potential, the 
energy levels nJε  that were found for a spherically 
symmetric Woods - Saxon field split in the axially 
deformed Woods - Saxon field into the energy levels 
that correspond to different values of the quantum 
number K  of the angular momentum projection 
J on the nucleus symmetry axis. That is, the 
degeneration 2 1J +  in K  is removed, but the 
twofold degeneration of levels in the sign of K  
remains. 

Thus, to determine the energy spectrum of a 
deformed nucleus XA

Z  in the framework of the 
considered adiabatic three-particle model of nuclei, 
it is necessary, following works [11 - 14], to obtain 
the spectra of levels nJε  and the corresponding wave 
functions of stationary states in the assumption of 
the spherical symmetry of the field of a nucleus, and 
then to take into account the deformation of the 
nucleus field while numericaly solving system (24). 

 
 
 

4. Numerical Calculations of the  
Energy Spectra of Even-Even Nuclei 

 
Below we illustrate the main points of the 

numerical calculation of the energy spectrum of the 
nuclei in the framework of the adiabatic three-
particle model of nuclei. It will be done on the 
example of low-lying excited states of even-even 
nuclei 6He, 10Be, 14C, 16C, 18Ne, 18O, 42Ca, and 58Ni 
which possess two valence nucleons in the external 
shell. For the simplification of calculations, we 
simulate the strong interaction of valence nucleons 
by the spherically symmetric Woods - Saxon 
potential. For the valence protons, we also consider 
the Coulomb interaction in addition to the strong 
one. 

Accordingly to the asymptotic behavior of the 
terms ( ) 2U R Rµ  investigated in [14] in detail, the 
calculations of the energy spectra of nuclei 6He, 
10Be, 14C, 16C, 18Ne, 180, 42Ca, and 58Ni under 
assumption of the spherically symmetric field of a 
nucleus core were carried out as follows. Parameters 
of the Woods - Saxon potential were selected in such 
a way that the potential terms ( ) 2U R Rµ  of nuclei 
6He, 10Be, 14C, 16C, 18Ne, 18O, 42Ca, and 58Ni tend to 
the corresponding levels of isotopes with mass 
numbers less by unit as R →∞ . The values of the 
Woods - Saxon potential parameters for nuclei 6He, 
10Be, 14C, 16C, 18Ne, 18O, 42Ca, and 58Ni defined in 
such a way are shown in Table 1. Then, following 
works [11 - 14], the spectra of levels and the 
corresponding wave functions of stationary states 
were determined by using the determined parameters 
of potentials. As the reference zero point, we took 
the energy when both valence nucleons were in the 
ground state, i.e. zero reference point, we took the 
energy of the state where both valence nucleons 
were in the ground state. 

 
Table 1. Parameters of the Woods - Saxon potential for 

nuclei 6He, 10Be, 14C, 16C, 18Ne, 18O, 42Ca and 58Ni 
 
Nucleus V0, МеV V1, МеV R0, fm a0, fm χ, fm2 

6He 28.0 14.0 1.27 0.625 0.415 
10Be 54.0 30.0 1.27 0.625 0.415 
14С 45.5 26.0 1.27 0.625 0.415 
16С 52.6 31.0 1.27 0.6 0.6 

18Ne 38.0 20.0 1.27 0.625 0.415 
58Ni 51.5 32.5 1.27 0.6 0.6 

 
The results of calculations of the energy spectrum 

nJε  of low-lying excited states of nuclei 6He, 10Be, 
14C, 16C, 18Ne, 18O, 42Ca, and 58Ni under assumption 
of a spherically symmetric field are given in Table 2, 
and their positions on the adiabatic potential terms 

( ) 2U R Rµ  of the nuclei are presented, respectively, 
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by straight lines in Figure. As a null, we took the 
energy of separation of two nucleons from nuclei 

6He, 10Be, 14C, 16C, 18Ne, 18O, 42Ca, and 58Ni, 
respectively. 
 

Table 2. Results of calculations of the energy of nuclei 6He, 10Be, 14C, 16C, 18Ne, 18O, 42Ca, and 58Ni states  
under assumption of the spherically symmetric Woods - Saxon potential 

 

Nucleus AX Configuration of 
nucleons Jπ nJε , МеV expε [20], 

МеV 
Uµ(R)/R2 for 

R = 15 fm, МеV 
nJε  [20], for 
А-1Х, МеV 

1p3/2 1p3/2 0+ 0 0 0.5575 0.8862 
1p3/2 1p3/2 2+ 1.7985 1.797 1.1052 0.8862 6He 
1p1/2 1p1/2 0+ 2.3114 - 1.2786 2.1426 
1р3/2 1р3/2 0+ 0 0 -26.1048 -13.97 
1р3/2 1р3/2 2+ 3.4706 3.368 -26.1048 -13.97 
1р1/2 1р1/2 0+ 6.1797 6.1793 -20.4006 -13.279 
1d5/2 1d5/2 2+ 7.5396 7.542 -18.0282 -9.66 

10Be 

1d5/2 1d5/2 4+ 9.2702 9.27 -18.0282 -9.66 
1р1/2 1р1/2 0+ 0 0 -8.3113 -4.9464 
1d5/2 1d5/2 0+ 6.59 6.5894 -1.7639 -1.0926 
1d5/2 1d5/2 2+ 7.0124 7.012 -1.7638 -1.0926 
1d5/2 1d5/2 4+ 10.7367 10.736 -1.7633 -1.0926 
1d3/2 1d3/2 0+ 9.7461 9.746 0.6392 2.7396 

14С 

1d3/2 1d3/2 2+ 10.4261 10.425 0.6399 2.7396 
1d5/2 1d5/2 0+ 0 0 -1.5252 -1.2177 
1d5/2 1d5/2 2+ 1.7667 1.766 -1.5252 -1.2177 
1d5/2 1d5/2 4+ 4.1329 4.142 -1.5252 -1.2177 
2s1/2 2s1/2 0+ 3.0297 3.027 -1.8009 -1.9577 
1d3/2 1d3/2 0+ 5.1212 - 2.0938 3.4393 

16С 

1d3/2 1d3/2 2+ 6.1071 6.109 2.0938 3.4393 
1d5/2 1d5/2 0+ 0 0 -0.5921 -0.6 
1d5/2 1d5/2 2+ 1.8875 1.8873 -0.5912 -0.6 
1d5/2 1d5/2 4+ 3.3765 3.3762 -0.5901 -0.6 
1d3/2 1d3/2 0+ 3.5766 3.5763 1.9102 4.04 
1d3/2 1d3/2 2+ 3.6165 3.6164 1.9106 4.04 

18Ne 

2s1/2 2s1/2 0+ 4.5889 4.59 -0.1446 -0.11 
2p3/2 2p3/2 0+ 0 0 -11.096 -10.265 
2p3/2 2p3/2 2+ 1.4563 1.4545 -11.096 -10.265 
2p1/2 2p1/2 0+ 2.9426 2.9424 -9.8904 -9.1524 
1f5/2 1f5/2 0+ 3.531 3.5309 -9.9832 -9.4965 
1f5/2 1f5/2 2+ 3.9018 3.8983 -9.9832 -9.4965 

58Ni 

1f5/2 1f5/2 4+ 4.3043 4.299 -9.9832 -9.4965 
 
The comparison foregoing of the adiabatic 

calculations of energy spectrum of nuclei with 
results of calculations [21] another authors in frame 
diverse methods and models are evidence on good 
their coincidence. 

 
5. Conclusions 

 
It should be said that in the K-harmonic method 

the basic functions formulate in obvious look with 
the help Jakobi polynoms and therefore the 
decomposition of wave function of stationary state 
with the help of basic K-harmonics converges very 
slowly when R  increases and it is necessary to take 
into account a large number of K-harmonics in 
calculations. In our approach the basic functions 

( ),RµΦ Ω  are obtained with the help of the 

numerical solution of the system of differential 
equations for all values of parameter R  and so we 
can expect a fast convergence of the decomposition 
(12). 

The investigation of a high-speed of the 
convergence of the adiabatic decomposition of a 
wave function ( ),RΨ Ω  of arbitrary stationary 
nuclear state and also the study of a contribution of 
channel coupling into the energy levels E , it means 
that the dependence of values of levels from the 
number of RN  equations of the system (13), is the 
subject of our future investigations. 

In future, for the numerical calculation of the 
energy spectrum of the stationary states of deformed 
nuclei, it is necessary to develop a package of 
applied computer programs, which would give us a 
possibility to use more realistic interaction potentials. 
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Behavior of the potential curves (terms) ( ) 2U R Rµ  and the energy levels of nucleus 6He, 10Be, 14C, 16C, 18Ne, 18O, 

42Ca, and 58Ni under assumption of the spherically symmetric Woods - Saxon potential. 
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With regard for the deformation of the nucleus core 
field and the spin-orbital interaction (19), we hope to 
improve the accuracy of calculations of the energy 
spectra of deformed nuclei. 

Numerical calculations of the energy spectra of 
deformed nuclei in the framework of the adiabatic 
three-particle model of nuclei are actual for further 

investigations. Thus, the adiabatic three-particle 
model of nuclei developed by us allows one to carry 
out, in the potential approach, the adequate 
theoretical description of pairing effects of nucleons 
and their angular and radial correlations which 
result, in particular, in the creation of superfluid 
nuclear states. 
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ТЕОРЕТИЧНИЙ  ОПИС  ПАРНИХ  КОРЕЛЯЦІЙ  НУКЛОНІВ  ПАРНО-ПАРНИХ  ЯДЕР  
В  АДІАБАТИЧНІЙ  ТРИЧАСТИНКОВІЙ  МОДЕЛІ 

 

Р. М. Плекан,  В. Ю. Пойда,  І. В. Хіміч 

 

Запропоновано гіперсферичний адіабатичний підхід для знаходження енергетичного спектра парно-парних 
атомних ядер, що моделюються відповідним сферично-симетричним парно-парним остовом плюс два валентні 
нуклони в зовнішній оболонці. Сформульовано адіабатичну тричастинкову модель ядра для випадку сферично-
симетричного та аксіально-симетричного деформованого ядра, яка базується на припущенні про відокремлення 
руху валентних нуклонів на швидкий рух по кутових змінних та адіабатичний (повільний) рух уздовж 
гіперрадіуса R. Ефективність адіабатичного підходу ілюструється на прикладах чисельного розрахунку 
енергетичного спектра низьколежачих збуджених станів парно-парних атомних ядер 6He, 10Be, 14C, 16C, 18O, 
18Ne, 42Ca,58Ni, які містять два валентні нуклони в зовнішній оболонці. 
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ТЕОРЕТИЧЕСКОЕ  ОПИСАНИЕ  ПАРНЫХ  КОРРЕЛЯЦИЙ  НУКЛОНОВ  ЧЕТНО-ЧЕТНЫХ  
ЯДЕР  В  АДИАБАТИЧЕСКОЙ  ТРЕХЧАСТИЧНОЙ  МОДЕЛИ 

 
Р. М. Плекан,  В. Ю. Пойда,  И. В. Химич 

 
Предложен гиперсферический адиабатический подход для нахождения энергетического спектра четно-

четных атомных ядер, которые моделируются соответствующим сферическо-симметричным четно-четным 
остовом плюс два валентных нуклона во внешней оболочке. Сформулирована адиабатическая трехчастичная 
модель ядра на случай сферическо-симметрического и аксиально-симметрического деформированного ядра, 
которая базируется на предположении об отделении движения валентных нуклонов на быстрое движение по 
угловым переменным и адиабатическое (медленное) движение вдоль гиперрадиуса R. Эффективность 
адиабатического подхода иллюстрируется на примерах численного расчета энергетического спектра 
низколежащих возбужденных состояний четно-четных атомных ядер 6He, 10Be, 14C, 16C, 18O, 18Ne, 42Ca,58Ni, 
которые содержат два валентных нуклона во внешней оболочке. 
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