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THEORETICAL DESCRIPTION OF NUCLEONS PAIRED CORRELATIONS OF
EVEN-EVEN NUCLEI IN THE ADIABATIC THREE-PARTICLE MODEL

R. M. Plekan, V. Yu. Pojda, 1. V. Khimich

Uzhgorod National University, Department of Nuclear Physics and Elementary Particles, Uzhgorod, Ukraine

A hyperspherical adiabatic approach (HAA) has been suggested to find the energy spectrum of even-even atomic
nuclei modelled by a spherically symmetric even-even core plus two valence nucleons in the external shell. The
adiabatic three-particle model of nucleus for the case of the spherically symmetric and axially symmetric nucleus has
been obtained. The so-called adiabatic three-particle model is based on the assumption on the separability of the motion
of valence nucleons into the high-speed motion of nucleons over the angular variables and the adiabatic (slow-speed)
motion of nucleons along the hyperradius R. The efficiency of the adiabatic approach is illustrated by the example of
the numerical calculations of the energy spectrum of low-lying excited states of the even-even atomic nuclei *He, '*Be,
e, 18c, 180, ®Ne, “Ca, and **Ni, which possess two valence nucleons in the shell.

1. Introduction

The difficulties of the mathematical character,
which arise in a process of the solution of the
Schrodinger equation for stationary states of atomic
nuclei, stimulates us to search the different
approximate methods and the model approaches of
its solution. The most familiar of them are: the shell
model [1], the Hartree - Fock method [2], the
superfluid nuclei model [3], the K-harmonic method
[4], the interacting bosons model [5], the unitary
correlation operator method (UCOM) [6], the Monte
Carlo shell model [7] and others. It is well known
that each of these methods has its characteristic
advantages and accordingly some limitations.

The angular and radial correlations of nucleons
and the pairing effects for nucleons of the same sort
play an important role in the formation of excited
states of nuclei and appear, particularly, in the
presence of gaps in the energy spectra of excited
states of even-even nuclei and in their absence in the
spectra of odd and odd-odd nuclei. Thus, it is
necessary to develop another method for the
calculation of the wave functions and the energy
spectra of stationary states of even-even nuclei,
which would go beyond the limits of the one-
nucleon Hartree - Fock approach [2]. As it is known
the pair correlations of nucleons of the same sort,
which result particularly in the existence of
superfluid states of nuclei [8], are considered most
logically and correctly in the superfluid model of
nucleus [9, 10] within the secondary quantization
formalism.

In the present paper, we suggest to consider the
pair correlations between nucleons in the potential
approach in the framework of the adiabatic three-
particle model of nuclei [11 - 14], based on the
assumption of separability of the motion of valence
nucleons of a nucleus into the high-speed movement

in angular variables, i.e. on the sphere S°(£2) and
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the adiabatic (low-speed) movement of nucleons
along the hyperradius R and on the introduction of
the notion of adiabatic potential term of nucleons
U,(R) which is convenient for the description. We

recall that the adiabatic three-particle model of
nuclei is based on the assumption of the existence of
an average self-consistent field in the model of
independent particles with taking into account a
short-range residual interaction of valence nucleons.

The further development and application of the
adiabatic approach in nuclear theory to the
investigation of the energy spectrum of both
spherical and deformed even-even nuclei within the
framework of the adiabatic three-particle model of
nuclei and with consideration of the Coulomb
interaction between valence protons besides the
strong one are considered to be topical now.

2. Description of the Energy Spectrum of
Stationary States of a Spherical Nucleus

A theoretical description of the energy spectrum
of excited states of nuclei, which are modelled by a
spherically symmetric even-even "core" plus two
nucleons on the outer unfilled shell, was carried out
in [11 - 14] within the HAA method. For the ;X

nucleus with two valence nucleons, the description
of nucleus in HAA method is carried out in terms of
collective variables, whose role is played by the
hyperradius R, hyperangle o
R=(+nr")"?, a=arctg(n/r) (D)
and usual spherical angles 7 ={p,6}, i=1,2.
In the adiabatic three-particle model of nuclei,
the effective self-consistent field is modelled by the

static spherically symmetric Woods - Saxon
potential [15]
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where R, =7,4"° and the projection of isotopic spin
t,=%1/2:"-" should be taken for a proton and "+"

for a neutron.
If there are two valence protons on the external
shell, then the Coulomb potential V, can be

modelled, for the sake of simplicity, as [15]

2

Ve=27(n), 3)
where
[3 1[ r ]2162(2—2) <
= - o . n<k,
(=1 2L @
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Here, V, (1;) is the potential energy of interaction

between the i-th proton and the Coulomb field of the
uniformly charged sphere.

For the simplification of further calculations, we
can represent the residual strong interaction of
valence nucleons between themselves as the
potential with zero interaction radius with regard to
the repulsion of nucleons at short distances [15]

- als - -
VuGm) = Vo[l=gp(52N6G 7))
The repulsion of nucleons is characterized by the
term p(ri—lz——rz) which denotes the total one-particle

density of nucleons. The relative contribution of
repulsion is defined by the g (g>0). Such a

choice of the residual interaction simplifies the
algorithm of the energy spectrum computation,
because it allows one to calculate, in the explicit
analytic form, the matrix elements of this interaction
and does not distort, possibly, the real situation. In
the future, more realistic models of the interaction
should be developed.

In the case of valence protons, their Coulomb
interaction

Vi :W (6)

must be added to (5).
The spin-orbital interaction of the i-th nucleon is
given by
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v, () =W, -5),

i=12. (7)

Thus, in the framework of the adiabatic three-
particle model of nuclei in terms of collective

variables (1), the potential energy V(R,_Q) of the
system under study is given by

V(R,Q2)=U,(Rcosa)+W, (Rcosog)(f1 .§l)+

+U, (Rsinoz)+W2(Rsinoz)(lq2 -§2)+V

s T Vi (8)

We note that using the Hamiltonian with central
two-particle and spin-orbital one-particle
interactions for a spherical nucleus corresponds to
the so-called intermediate coupling approximation.

As was shown in works [11 - 14], the problem of
determination of the energy spectrum for spherical
atomic nuclei in the framework of the adiabatic
three-particle model of nuclei is reduced to solving
the two following problems.

In the first place, it is the problem of

determination of adiabatic potential terms U, (R) of

nucleons of the nucleus and the corresponding basis
functions @, (R,£2). This can be done by a

numerical solution of the system of differential
equations for the variable o (hi=m, =1),

2 + Uﬂ (R>:| ?5‘52/112 (R’ a) +
CoS &

sin’ o

+ R2 Z V:/-I./.lelz (R’ a)(o(#)

LE Jihhil

(R,a) =0, ©)
ikl
where the coefficients ¢f('l/;z)ll L

the decomposition [11] of the @, (R,_Q)

(R,a) which appear in

(u) — ol (u)
@ (R,a)=sinacosa @7, (R,a).

(10)

System (9) is supplemented by the boundary
conditions that ensure a boundedness of the function

¢,(R,a) at zero and the validity of the Pauli

principle:

9, (R,a=0)=0, (11)
(p;fliz)h/z (R’a) ‘a:ﬂ/4: (_l)jiirjﬁl(p;;j).lzh (R,7Z'/2 - 0!) |a:;r/4’
ap\) (R.a)l dal, .= (1) """ dp"), (R,a)/dat|,_,,, -

Thus, we can find the adiabatic terms U, (R)

and basis functions @, (R,£2) by solving system
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(9) with boundary conditions (11). The expansion of
the full wave function of the system #(R,(2) in the

hyperspherical adiabatic basis {@,(R,£2)} looks

¥ (R,2)=R7 Y F (R)®,(R,Q2).

u

(12)

Secondly, we must determine the radial functions
F, (R) and the energy spectrum £ of bound states

of nucleons through a numerical solution of the
system of differential equations for the variable R

d2
{‘W‘w

The radial functions F,(R) satisfy the boundary

conditions

F,(0)=F,(0)=0. (14)

In numerical calculations, we substitute the
interval (0,00] of R by a finite interval [0,R,,,]

and truncate system (13) to that with a finite number
of equations. Using the adiabatic approximation, in
which expansion (12) contains only diagonal matrix
elements, reduces system (13) to a single equation.

The explicit form of potentials (2) - (7) is given
in[12, 13].

The efficiency of the HAA method in the
framework of the adiabatic three-particle model of
nuclei has been illustrated by the example of
numerical calculations of the energy spectra of even-
even nuclei under assumption of spherical symmetry
of the field of nucleus. The calculated energies of
excited states of nucleons for the certain studied
nuclei indicate the necessity to take into account the
polarization effects for the even-even core, i.e. to
consider a deformation of the core field by nucleons
from the external unfilled shell.

3. Description of the Energy Spectrum of
Stationary States of a Deformed Nucleus

In the calculations of stationary states of
deformed nuclei, the Nilsson potential was used for
a long time as an effective potential of the average
nuclear field of a core [16]. With the help of the
Nilsson potential, a rather simple scheme for the
determination of the one-particle levels and
corresponding wave functions of states of deformed
nuclei was developed. However, the Nilsson
potential has a number of essential limitations. For
example, it has infinite depth, which yields the
improper behaviour of wave functions on the
nucleus boundary and outside it. Moreover, the spin-
orbital interaction in the Nilsson's scheme is
independent of the mass number A4 and the
deformation parameters.

Therefore, a more realistic finite anisotropic
Woods - Saxon potential becomes recently to be
widely used in calculations of the energy spectrum
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L+ U,(R) —ZE}Fy (R)+ Z{HW, (R)F,(R)+0,, (R)iF

d
b (R)+E[QW,(R)FH,(R)]} =0. (13)

| of deformed nuclei [17, 18]. For the first time, the
problem of determination of one-particle levels and
wave functions of states in a deformed Woods -
Saxon potential was investigated by Nemirovskii
and Chepurnov in [17]. Later on, other methods of
solving the Schrodinger equation with anisotropic
Woods - Saxon potential were proposed in the one-
particle approximation [18].

It is necessary to note that the integral of motion
for deformed nuclei with the form of an ellipsoid of
revolution is the projection K of the total angular
momentum of a nucleon on the nucleus symmetry
axis, 1.e. one-particle nucleon states are
characterized by energy, parity, and projection K .

In the adiabatic three-particle model of nuclei,
the stationary states of two valence nucleons in the
deformed nucleus field, which is simulated by the
anisotropic Woods - Saxon potential, are determined
[19] from the Schrodinger’s equation

h2

A+V-EW =0,
2u,

hz
(—2—/114 -

(15)

where the potential energy operator of the system is
given by

V=UG.B)+V,(7.6,.8)+U, (7. B)+

Vo (55,05, B) + Vo (1, 5) + Vi, (7573) -

(16)

Here, U,

1

(7, ﬂ) is purely the nuclear potential

energy of the i-th nucleon at the point 7 in the
deformed axially symmetric Woods - Saxon field:

U,-<r,->=(—V0+2V1 2 a)x
r—R(0

x(1+exp[ ”ﬂ)B +Vk£%—tzj.(l7)

The radius R(6,p) of the deformed axially

symmetric field of a nucleus depends on the
deformation parameter £ and the angle 6, relative

ay

to the symmetry axis of a nucleus and is chosen as
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R(G,, ) = R,[1+ BY,,(6)]. (18)

As is well known, spin-orbital interaction
operators in the case of the nuclear potential
U.(7, ) have the form [17]

hz
2
2 2,

It is convenient to seek for solutions of Eq. (20)
in hyperspherical coordinates (1) in the form of a
superposition of solutions ¥,

VeRD)=2, 2. Conc (R D), (1)
of the stationary Schrodinger’s equation
" -~ =
5,0y, =0)+
2/11
res (}’1,}’2) gn/) nJK = O (22)
with  the  spherically symmetric  potential
V(7,6,,5,6,,=0).

The stationary states

Yok =V, (R2)=F , (R)D, (R, 2) (23)

of the corresponding spherical nucleus can be
obtained from (22) according to the scheme
introduced in [11 - 14] and briefly given in Section 2.

After the substitution of (21) to (20),
multiplication of all terms of the equation by

T*I’K' (R,£2), and integration over the whole region

of hyperspherical coordinates, we obtain
> > (6 —E)C, 0,5, +
n J
+ZZCM< <,[jn'.]'l(' | I7( 0-1 ’rzao—zvﬂ)| nJK> 0, (24)
n J
where

V(Fl’a-l’?za&zaﬂ):V(;'I,a-l,%’&z’ﬂ)_

—V(Ijl,a'l,lé,&z,ﬁZO):

=2 0., 6. P) (29
U.G;,p)=U,B)-U,G,B=0),  (26)
I71'3'0(;';’621"ﬁ):I/z‘so(’_ﬂ;"a-i’ﬂ)_Vi:o(;';’ézi’ﬂ:0)' (27)
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AZ+V(;i’6-157‘2’&25ﬂ)_V(;ia&b?'za&zaﬁ=O)+V(;i:6-1a;:2:6-23ﬂ=0)+ req(ﬁs;‘z) E)’ZU 0.

Vso(;ﬂ;"&i’ﬂ) = _Z[ﬁz X&[]'gradUz(;f‘nB) - (19)

In (15), we separate the spherically symmetric
part of interaction and the additional term which sets
a deviation of the interaction symmetry from the

| spherical one. As a result, we obtain the equation

(20)

| We can represent the spin-orbital addition
V. (%,0,,1,0,,0) (27) in potential (25) as [17, 18]

V(7,616 B) = W+ Wy + Wy, (28)
where
2
21 U(V,,ﬂ) s,), (29)
i=1 T b
21 aU.(r,p)
AN , (30
ler, sing. 09, 127 30)
1 GU(F,ﬂ) .G, (31)
i=1 1; o
and
0 0 ., 0
=—ih—, p, =—ih—, =—ih—. (32
p)l 1 a]’; pﬂ, 1 601 pf/’, a ) ( )
In (29) - 31), o,,0,,0, is the Pauli matrices

which are given explicitly in [17].

In order to solve the system of equations (24)
numerically, we need to know the matrix elements
of the potentials of both purely nuclear and spin-
orbital interactions.

For the determination of matrix elements in (24),
it is convenient to expand V(7,5,,7,5,,/8) in a
series in terms of spherical functions. For the nuclear
terms of potential (25), we obtain

U,‘(E’ﬂ)zzl‘%ml( o ﬂ) /Im( i’¢,‘)- (33)
Respectively
aUér ﬂ) ZBlm( (04 ﬂ) lm( i’(oi) . (34)

where the expansion coefficients 4,, (2, /) and
B, , (1,a,[) should be obtained numerically. In the

examined case
m =m,=0.

of an axisymmetric nucleus,

The system of homogeneous equations (24) has
nonzero solutions if the determinant composed from
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the coefficients of the unknowns C, , equals zero.
Expanding this determinant, we obtain an algebraic
equation for the determination of E .

By solving system (24) in the standard way, we
can find the energy spectrum E of the deformed
nucleus, coefficients C ,, and, hence, the
corresponding wave functions of stationary states of
the deformed nucleus. We can obtain the unknown
energy E of the deformed nucleus for B <<1 by
the method of perturbation theory with respect to the
deformation parameter £ .

For the case of minor deformations £ <<1, we
can consider the operator 17(71,6'],172,6'2, £) in Eq.
(24) as an operator of perturbation which represents
the difference between a weakly deformed Woods -
Saxon potential with deformation parameter [ <<1
and a spherical Woods - Saxon potential. The energy
of an arbitrary level E , of a deformed nucleus in
the first approximation of perturbation theory is
given by

E= E(]/L =&, Vo 5

ne

(35)

where ¢, is the energy of the j-th level of a
spherically symmetric nucleus and V, . 1s the

¥

unknown element of the operator
V(7,6,,7,,6,,0). The explicit type of matrix
(35) of the

V(#,6,,7,,6,,) was given in [19].

As it is seen from formula (35), due to the axial
symmetry of the Woods - Saxon potential, the
energy levels ¢, that were found for a spherically

matrix

elements operator

VnJK nJK

symmetric Woods - Saxon field split in the axially
deformed Woods - Saxon field into the energy levels
that correspond to different values of the quantum
number K of the angular momentum projection
Jon the nucleus symmetry axis. That is, the
degeneration 2J +1 in |K| is removed, but the
twofold degeneration of levels in the sign of K
remains.

Thus, to determine the energy spectrum of a
deformed nucleus ;X in the framework of the
considered adiabatic three-particle model of nuclei,
it is necessary, following works [11 - 14], to obtain
the spectra of levels ¢, and the corresponding wave
functions of stationary states in the assumption of
the spherical symmetry of the field of a nucleus, and
then to take into account the deformation of the
nucleus field while numericaly solving system (24).
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4. Numerical Calculations of the
Energy Spectra of Even-Even Nuclei

Below we illustrate the main points of the
numerical calculation of the energy spectrum of the
nuclei in the framework of the adiabatic three-
particle model of nuclei. It will be done on the
example of low-lying excited states of even-even
nuclei *He, '“Be, '“C, '°C, "®Ne, '*0, **Ca, and **Ni
which possess two valence nucleons in the external
shell. For the simplification of calculations, we
simulate the strong interaction of valence nucleons
by the spherically symmetric Woods - Saxon
potential. For the valence protons, we also consider
the Coulomb interaction in addition to the strong
one.
Accordingly to the asymptotic behavior of the

terms U ﬂ(R) / R® investigated in [14] in detail, the

calculations of the energy spectra of nuclei °He,
10 14 16 18 18 42 S8\T:

Be, "C, °C, "Ne, °0, "“Ca, and °°Ni under
assumption of the spherically symmetric field of a
nucleus core were carried out as follows. Parameters
of the Woods - Saxon potential were selected in such

a way that the potential terms U, (R) / R of nuclei

SHe, 'Be, "*C, '°C, "®Ne, "*0, *Ca, and **Ni tend to
the corresponding levels of isotopes with mass
numbers less by unit as R — oo . The values of the
Woods - Saxon potential parameters for nuclei *He,
'Be, C, '°C, "™Ne, "*0, *Ca, and *Ni defined in
such a way are shown in Table 1. Then, following
works [11-14], the spectra of levels and the
corresponding wave functions of stationary states
were determined by using the determined parameters
of potentials. As the reference zero point, we took
the energy when both valence nucleons were in the
ground state, i.e. zero reference point, we took the
energy of the state where both valence nucleons
were in the ground state.

Table 1. Parameters of the Woods - Saxon potential for
nuclei 6He, 10Be, l"C, 16C, 18Ne, 180, “2Ca and *Ni

Nucleus | Vo, MeV | Vi, MeV | Ry, fm | aq, fm | y, fim?
He 28.0 14.0 127 | 0.625 | 0.415
""Be 54.0 30.0 127 | 0.625 | 0.415
Hc 45.5 26.0 127 | 0.625 | 0.415
°C 52.6 31.0 1.27 0.6 0.6
"Ne 38.0 20.0 1.27 | 0.625 | 0.415
3Ni 51.5 32.5 1.27 0.6 0.6

The results of calculations of the energy spectrum
g,, of low-lying excited states of nuclei “He, "Be,
e, 15C, ®Ne, '*0, **Ca, and **Ni under assumption
of a spherically symmetric field are given in Table 2,
and their positions on the adiabatic potential terms

U, (R) / R* of the nuclei are presented, respectively,
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by straight lines in Figure. As a null, we took the
energy of separation of two nucleons from nuclei

He, '"Be, "C, '°C, "Ne, "0, **Ca, and *Ni,
respectively.

Table 2. Results of calculations of the energy of nuclei 6He, 10Be, 14C, 16C, lsNe, 18O, 42Ca, and *®Ni states
under assumption of the spherically symmetric Woods - Saxon potential

A Configuration of MeV Eup [20], Uy( R)/R* for &,, [20], for
Nucleus "X nucleons S b » V€ MeV R =15 fm, MeV AX. MeV
1ps» 1p3p 0" 0 0 0.5575 0.8862
*He 1psp 1psp 2" 1.7985 1.797 1.1052 0.8862
1pis 1pin 0" 23114 - 1.2786 2.1426
1p3/2 1p3/2 0+ 0 0 -26.1048 -13.97
Ipsp Ipan 2+ 3.4706 3.368 -26.1048 -13.97
""Be 1pis 1pin 0+ 6.1797 6.1793 -20.4006 -13.279
1ds;, 1dsp, 2+ 7.5396 7.542 -18.0282 -9.66
1ds;, 1dsp, 4+ 9.2702 9.27 -18.0282 -9.66
1pl/2 1p1/2 0+ 0 0 -8.3113 -4.9464
1ds;, 1ds), 0+ 6.59 6.5894 -1.7639 -1.0926
e 1ds;, 1ds), 2+ 7.0124 7.012 -1.7638 -1.0926
1ds;, 1ds), 4+ 10.7367 10.736 -1.7633 -1.0926
1ds, 1d;0 0+ 9.7461 9.746 0.6392 2.7396
1ds,, 1d;0 2+ 10.4261 10.425 0.6399 2.7396
1ds;, 1ds), 0" 0 0 -1.5252 -1.2177
1ds;, 1ds), 2" 1.7667 1.766 -1.5252 -1.2177
16C 1ds;, 1ds), 4" 4.1329 4.142 -1.5252 -1.2177
2815 281 0" 3.0297 3.027 -1.8009 -1.9577
1ds,, 1d;0 0" 5.1212 - 2.0938 3.4393
1ds,, 1d;0 2" 6.1071 6.109 2.0938 3.4393
1ds;, 1ds), 0" 0 0 -0.5921 -0.6
1ds;, 1ds), 2" 1.8875 1.8873 -0.5912 -0.6
18Ne 1ds;, 1ds), 4* 3.3765 3.3762 -0.5901 -0.6
1ds,, 1d;0 0" 3.5766 3.5763 1.9102 4.04
1ds,, 1d;0 2" 3.6165 3.6164 1.9106 4.04
2815 281 0" 4.5889 4.59 -0.1446 -0.11
2p3 2py» 0" 0 0 -11.096 -10.265
2p3/2 2p3/2 2+ 1.4563 1.4545 -11.096 -10.265
sgNi 2p1/2 2p1/2 OJr 2.9426 2.9424 -9.8904 -9.1524
15, 1£5), 0" 3.531 3.5309 -9.9832 -9.4965
15, 1£5), 2" 3.9018 3.8983 -9.9832 -9.4965
15, 1£5), 4" 4.3043 4.299 -9.9832 -9.4965
The comparison foregoing of the adiabatic numerical solution of the system of differential

calculations of energy spectrum of nuclei with
results of calculations [21] another authors in frame
diverse methods and models are evidence on good
their coincidence.

5. Conclusions

It should be said that in the K-harmonic method
the basic functions formulate in obvious look with
the help Jakobi polynoms and therefore the
decomposition of wave function of stationary state
with the help of basic K-harmonics converges very
slowly when R increases and it is necessary to take
into account a large number of K-harmonics in
calculations. In our approach the basic functions

@,(R,Q2) are obtained with the help of the
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equations for all values of parameter R and so we
can expect a fast convergence of the decomposition
(12).

The investigation of a high-speed of the
convergence of the adiabatic decomposition of a

wave function ¥ (R,£2) of arbitrary stationary

nuclear state and also the study of a contribution of
channel coupling into the energy levels E , it means
that the dependence of values of levels from the
number of N, equations of the system (13), is the

subject of our future investigations.

In future, for the numerical calculation of the
energy spectrum of the stationary states of deformed
nuclei, it is necessary to develop a package of
applied computer programs, which would give us a
possibility to use more realistic interaction potentials.
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Behavior of the potential curves (terms) U, (R) / R? and the energy levels of nucleus *He, '’Be, '*C, '°C, "*Ne, "*0,

#2Ca, and **Ni under assumption of the spherically symmetric Woods - Saxon potential.

SAAEPHA ®I3UKA TA EHEPTETUKA Ne2 (20) 2007 53



R.M. PLEKAN, V.YU. POJDA, 1.V. KHIMICH

With regard for the deformation of the nucleus core
field and the spin-orbital interaction (19), we hope to
improve the accuracy of calculations of the energy
spectra of deformed nuclei.

Numerical calculations of the energy spectra of
deformed nuclei in the framework of the adiabatic
three-particle model of nuclei are actual for further

investigations. Thus, the adiabatic three-particle
model of nuclei developed by us allows one to carry
out, in the potential approach, the adequate
theoretical description of pairing effects of nucleons
and their angular and radial correlations which
result, in particular, in the creation of superfluid
nuclear states.
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TEOPETUYHUN ONMUC MAPHHUX ISOPEJI?[IIIFI HYKJIOHIB MAPHO-IAPHUX SIIEP
B AJUJABATUYHIM TPUYACTUHKOBIU MOJEJII

P. M. IInekan, B. 0. Iloiixa, 1. B. Ximiu

3anponoHoBaHo TinepchepuuHnii axiabaTUIHUNA MiIXiT AT 3HAXOKEHHsI €eHePTeTUIHOTO CIEKTpa MapHO-TapHUX
aTOMHHX sJep, L0 MOJIEIIOIOThCS BIANIOBIAHUM C(HEpPUIHO-CUMETPHYHIM IIapHO-IIAPHUM OCTOBOM IUIIOC [[BAa BAJICHTHI
HYKJIOHU B 30BHiIIHINA 000s0HI(I. ChopMyIp0BaHO afiabaTHYHy TPUIACTHHKOBY MOJICIb sipa IS BUMAIKY chepruuHO-
CHUMETPUYHOTI'O Ta aKCiaIbHO-CUMETPHUYHOTO JIe)OPMOBAHOTO sIpa, Ka 0a3yeThCs HA TPUITYLICHHI PO BiJIOKPEMIICHHS
pPyXy BQJICHTHHX HYKJIOHIB Ha LIBHJKHH pyX II0 KyTOBHX 3MIHHHX Ta ajiabaTWuHuii (MOBUIBHUI) PyX Y3HOBX
rineppaniyca R. EdexrtuBHicTh aniabaTMYHOro MiAXOJy UIIOCTPYEThCS Ha NPHUKIAAAX UYHCEIBHOTO PO3PaXyHKY
EHEPreTHYHOro CIEKTPa HM3bKOJIEKAUMX 30y/DKEHHX CTaHiB mapHo-maphux aTomuux siep ‘He, '’Be, '*C, '°C, 'O,
"®Ne, **Ca,*®Ni, sixi MicTsITh 1Ba BaeHTHI HYKJIOHH B 30BHIIITHIA 00OIIOHIII.
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THEORETICAL DESCRIPTION

TEOPETUYECKOE OINMCAHME IMAPHBIX KOPPEJISIIAA HYKJIOHOB YETHO-YETHBIX
SITIEP B AIMABATUYECKON TPEXYACTHYHOM MOJEJIH

P. M. [Inekan, B. IO. IToiina, WU. B. Xumuu

[MpennoxeH runepchepuueckuii aanabaTHYECKUH IMOAXOJ IS HAXOXKIEHHS JHEPreTHYECKOro CIIEKTpa YETHO-
YEeTHBIX aTOMHBIX S/IEp, KOTOPBIE MOJEIUPYIOTCS COOTBETCTBYIOUIMM C(EpHUECKO-CUMMETPHUYHBIM YETHO-YETHBIM
OCTOBOM IUTIOC J[Ba BAJEHTHBIX HYKJIOHA BO BHemIHed oOosiouke. ChopmynupoBaHa aanabaTHdeckass TpeX4acTHIHAsS
MOJICNIb Spa Ha CIy4Yail chepuiecKo-CHMMETPHYECKOTO M aKCHATbHO-CUMMETPUYECKOro Je(GOpMUPOBAHHOTO spa,
KOTOpasi 0a3upyeTcs Ha MPEATIONOKESHHH 00 OTIENCHHUH IIBIKCHHS BAJICHTHBIX HYKJIOHOB Ha OBICTpOE ABMXXEHHUE IO
VIJIOBEIM TIEPEMEHHBIM W aamadaTthdeckoe (MEIVIEHHOE) IBIKCHHE BIONb Truneppagmyca R. DPQeKTHuBHOCTH
anabaTHYecKOro IOIXOJa WIUIIOCTPUPYETCS Ha MpHMepax YHCISCHHOTO pacyeTa SHEepreTHYeCKOro CIIEKTpa
HU3KOJIS)KANTNX BO30Y>KICHHBIX COCTOSHHH YETHO-4ETHBIX ATOMHBIX sIep He, '°Be, 14C, 16¢, 180, ISNe, 42Ca,58Ni,
KOTOpBIE COJIEPIKAT B BAICHTHBIX HYKJIOHA BO BHELIHEH 000JI0UKe.
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