ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Cross-section calculations of (n,2n) and (n,p) reactions for 69,71Ga and 75As target nuclei up to 20 MeV
H. Sahan, M. Sahan*, E. Tel
Department of Physics, Faculty of Arts and Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey
*Corresponding author. E-mail address:
muhittinsahan@osmaniye.edu.tr
Abstract: In the present research, neutron induced reaction cross sections of 69,71Ga(n,2n), 69,71Ga(n,p), 75As(n,2n) and 75As(n,p) were investigated up to 20 MeV. Three theoretical calculation codes (EMPIRE 3.2, TALYS 1.6 and ALICE/ASH) were used for model calculations based on the Weisskopf - Ewing and Hauser - Feshbach theories. The results of theoretical calculations were compared with some empirical formulas developed by different researches, with evaluated nuclear data sets (JENDL-4.0u2 (2012), TENDL-2015, JEFF-3.2 (2014), and ENDF/B-VIII.0 (2018)) and also with the available experimental data found in literature.
Keywords: nuclear reactions, 69,71Ga, 75As, TALYS 1.6, EMPIRE 3.2, ALICE/ASH, cross section.
References:1. E. Tel et al. The study of the (n,2n) reaction cross-sections for neighbor deformed nuclei in the region of rare-earth elements. Acta Physica Slovaca 54(2) (2004) 191. http://www.physics.sk/aps/pubs/2004/aps-2004-54-2-191.pdf
2. R.A. Forrest, J. Kopecky, Statistical analysis of cross sections - A new tool for data validation. Fusion Engineering and Design 82(1) (2007) 73. https://doi.org/10.1016/j.fusengdes.2006.07.093
3. S.L. Goyal, P. Gur. Empirical relation and establishment of shell effects in (n,2n) reaction cross-sections at 14 MeV. Pramana - J. Phys. 72 (2009) 355. https://www.ias.ac.in/article/fulltext/pram/072/02/0355-0362
4. E. Tel. Study on Some Structural Fusion Materials for (n,p) Reactions up to 30 MeV Energy. Journal of Fusion Energy 29 (2010) 332. https://doi.org/10.1007/s10894-010-9285-z
5. P. Collery et al. Gallium in cancer treatment. Crit. Rev. Oncol. Hematol. 42 (2002) 283. https://doi.org/10.1016/S1040-8428(01)00225-6
6. H.S. Yu, W.T. Liao. Gallium: Environmental Pollution and Health Effects. In: Encyclopedia of Environmental Health (Burlington: Elsevier, 2011) p. 829. https://doi.org/10.1016/B978-0-444-52272-6.00474-8
7. K. Shibata et al. Evaluation of Neutron Nuclear Data on Arsenic-75 for JENDL-4. J. Nucl. Sci. Technol. 47(1) (2010) 40. https://doi.org/10.1080/18811248.2010.9711925
8. M. Herman et al. EMPIRE-3.2 Malta modular system for nuclear reaction calculations and nuclear data evaluation. User’s Manual, 2013. INDC(NDS)-0603, BNL-101378-2013. https://www.bnl.gov/isd/documents/82108.pdf
9. A. Koning, S. Hilaire, S. Goriely. TALYS-1.6 A Nuclear Reaction Program. User Manual. 1-st ed. (NRG, The Netherlands, 2013). http://www.talys.eu/fileadmin/talys/user/docs/talys1.6.pdf
10. C.H.M. Broeders et al. ALICE/ASH - Pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies. Report FZK 7183 (2006). http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf
11. W. Hauser, H. Feshbach. The Inelastic Scattering of Neutrons. Phys. Rev. 87 (1952) 366. https://doi.org/10.1103/PhysRev.87.366
12. H. Feshbach, A. Kerman, S. Koonin. The statistical theory of multi-step compound and direct reactions. Annals of Physics 125(2) (1982) 429. https://doi.org/10.1016/0003-4916(80)90140-2
13. R. Capote et al. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nuclear Data Sheets 110 (2009) 3107. https://doi.org/10.1016/j.nds.2009.10.004
14. A. Gilbert, A.G.W. Cameron. A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43 (1965) 1446. https://doi.org/10.1139/p65-139
15. A. Iwamoto, K. Harada. Mechanism of cluster emission in nucleon-induced pre-equilibrium reactions. Phys. Rev. C 26(5) (1982) 1821. https://doi.org/10.1103/PhysRevC.26.1821
16. A.J. Koning, J.P. Delaroche. Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713 (2003) 231. https://doi.org/10.1016/S0375-9474(02)01321-0
17. A. Koning, D. Rochman. Modern Nuclear Data Evaluation with the TALYS Code System. Nuclear Data Sheets 113 (2012) 2841. https://doi.org/10.1016/j.nds.2012.11.002
18. W. Dilg et al. Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250. Nucl. Phys. A 217 (1973) 269. https://doi.org/10.1016/0375-9474(73)90196-6
19. C. Kalbach. Two-component exciton model: Basic formalism away from shell closures. Phys. Rev. C 33 (1986) 818. https://doi.org/10.1103/PhysRevC.33.818
20. M. Blann, H.K. Vonach. Global test of modified precompound decay models. Phys. Rev. C 28 (1983) 1475. https://doi.org/10.1103/PhysRevC.28.1475
21. M. Blann. ALICE-91. Statistical Model Code System with Fission Competition. RSIC Code. PACKAGE PSR-146 (1991). https://rsicc.ornl.gov/codes/psr/psr1/psr-146.html
22. V.F. Weisskopf, D.H. Ewing. On the Yield of Nuclear Reactions with Heavy Elements. Phys. Rev. 57 (1940) 472. https://doi.org/10.1103/PhysRev.57.472
23. D. Wilmore, P. E. Hodgson. The calculation of neutron cross-sections from optical potentials. Nuclear Physics 55 (1964) 673. https://doi.org/10.1016/0029-5582(64)90184-1
24. F.D. Bechetti, Jr., G.W. Grenlees. Nucleon-Nucleus Optical-Model Parameters, A > 40, E < 50 MeV. Phys. Rev. 182 (1969) 1190. https://doi.org/10.1103/PhysRev.182.1190
25. A. Aydin et al. A New Comparison of Empirical and Semi-empirical Formulae for the (n,3He) Reaction Cross-sections at 14 - 15 MeV. Journal of Fusion Energy 27(4) (2008) 314. https://doi.org/10.1007/s10894-008-9139-0
26. A. Aydin, E. Tel, A. Kaplan. Calculation of 14 - 15 MeV (n,d) Reaction Cross Sections Using Newly Evaluated Empirical and Semi-empirical Systematics. Journal of Fusion Energy 27(4) (2008) 308. https://doi.org/10.1007/s10894-008-9140-7
27. R. Doczi et al. Investigations on (n,p) cross sections in the 14 MeV region. IAEA Nuclear Data Section Report. INDC(HUN)-032, Distr. L. 1997. https://inis.iaea.org/search/search.aspx?orig_q=RN:29003390
28. A.Yu. Konobeyev, Yu.A. Korovin. Semi-empirical systematics of (n,2n) reaction cross section at energy of 14.5 MeV. Nuovo Cimento A 112(9) (1999) 1001. https://doi.org/10.1007/BF03035906
29. W.D. Lu, R.W. Fink. Applicability of the Constant-Nuclear-Temperature Approximation in Statistical-Model Calculations of Neutron Cross Sections at 14.4 MeV for Medium-Z Nuclei. Phys. Rev. C 4 (1971) 1173. https://doi.org/10.1103/PhysRevC.4.1173
30. V.M. Bychkov et al. Cross sections for the (n,p), (n,α) and (n,2n) threshold reactions. INDC (CCP)-I46/U. (IAEA, Vienna, 1980). https://inis.iaea.org/search/search.aspx?orig_q=RN:13679519
31. Y. Ikeda et al. Activation cross section measurements for fusion reactor structural materials at neutron energy from 13.3 MeV to 15.0 MeV using FNS facility. JAERI 1312,Tokai-mura (1988). https://inis.iaea.org/collection/NCLCollectionStore/_Public/19/086/19086046.pdf
32. E. Tel et al. A New empirical formula for 14 - 15 MeV neutron-induced (n,p) reaction cross sections. J. Phys. G: Nucl. Part. Phys. 29 (2003) 2169. https://doi.org/10.1088/0954-3899/29/9/311
33. E. Tel et al. Semi-empirical systematics of (n,2n), (n,α) reactions cross sections at 14 - 15 MeV neutron energy. International Journal of Modern Physics E 17 (2008) 567. https://doi.org/10.1142/S0218301308009914
34. C. Konno et al. Activation cross-section measurements at neutron energy from 13.3 to 14.9 MeV. JAERI Reports No. 1329 (EXFORCODE: #22637) (1993).
35. Y. Kasugai et al. Systematics for (n,p) excitation functions in the neutron energy between 13.3 and 15.0 MeV. Ann. Nucl. Ener. 23(18) (1996) 1429. https://doi.org/10.1016/0306-4549(95)00114-X
36. C.H.M. Broeders, A.Yu. Konobeyev. Semi-empirical systematics of (n,p) reaction cross-section at 14.5, 20, and 30 MeV. Nucl. Phys. A 780 (2006) 130. https://doi.org/10.1016/j.nuclphysa.2006.09.015
37. EXFOR/CSISRS: http://www.nndc.bnl.gov/exfor/exfor00.htm
38. M. Bormann, et al. Some excitation functions of neutron induced reactions in the energy range 12.6 - 19.6 MeV. Nucl. Phys. 63(3) (1965) 438. https://doi.org/10.1016/0029-5582(65)90474-8