Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2018, volume 19, issue 4, pages 336-340.
Section: Nuclear Physics.
Received: 13.07.2018; Accepted: 11.10.2018; Published online: 14.02.2019.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2018.04.336

Corrections to the wave functions of atomic electrons in the potential of Thomas - Fermi

S. N. Fedotkin*

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: snfedotkin@gmail.com

Abstract: Corrections to the wave functions of atomic electrons in hydrogen-like atom are calculated by using the Thomas-Fermi potential in the framework of perturbation theory. In this approach the interaction of electrons in atom is approximately taken into account. Corrections to wave functions are important for describing various processes involving electrons in multielectronic atoms. Cross sections of the photoelectric effect on the L-shell of the atom are calculated in the proposed approach with impurity for the admixture of K-shell states.

Keywords: photoeffect, Thomas - Fermi model, atomic shell.

References:

1. L.H. Thomas. The calculation of atomic fields. Math. Proc. Camb. Phil. Soc. 23(5) (1927) 542. https://doi.org/10.1017/S0305004100011683

2. E. Fermi. Statistical method to determine some properties of atoms. C. Acc. Lincei 6 (1927) 602; Article

Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z. Phys. 48(1-2) (1928) 73. https://doi.org/10.1007/BF01351576

3. P. Gombas. Die Statistische Theorie des Atoms und ihre Anwendungen (Wien: Springer-Verlag, 1949) 399 p. https://www.springer.com/us/book/9783709121016

4. R.J. Latter. Atomic Energy Levels for the Thomas-Fermi and Thomas-Fermi-Dirac Potential. Phys. Rev. 99(2) (1955) 510. https://doi.org/10.1103/PhysRev.99.510

5. C.F. Fischer. The Hartree - Fock Method for Atoms (N.Y., London: John Wiley & Sons, 1977). Google books

6. Electronic and Atomic Collision. Ed. by G. Watel, P.G. Burke (North-Holland, Amsterdam, 1978) 201 p. Google books

7. K. Smith, R.J.W. Henry, P.G. Burke. Scattering of Electrons by Atomic Systems with Configurations 2pq and 3pq. Phys. Rev. 147 (1966) 21. https://doi.org/10.1103/PhysRev.147.21

8. S.N. Fedotkin. Cross-section of the photoeffect averaged over the atomic electrons, Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 17(3) (2016) 226. (Rus); https://doi.org/10.15407/jnpae2016.03.226

Calculation of the atomic states energies in the Thomas - Fermi approximation. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 18(3) (2017) 215. (Rus) https://doi.org/10.15407/jnpae2017.03.215

9. T. Tietz. Simple Analytical Eigenfunctions of Electrons in Thomas - Fermi Atoms. Zs. Naturfosch. 23a (1968) 191. Article

10. L.D. Landau, E.M. Lifshits. Quantum Mechanics (Moskva: Nauka, 1974). (Rus) Google books

11. H.A. Bethe, E.E. Salpeter. Quantum Mechanics of One- and Two-Electron Atoms (Berlin-Gottingen- Heidelberg: Springer-Verlag, 1957) 562 p. Google books

12. W. Heitler. Quantum Theory of Radiation (London: Oxford University Press, 1954) 453 p. Google books