ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Ground and transition properties of 40Ca and 48Ca nuclei
Ali H. Taqi*, Ebtihal G. Khidher
Department of Physics, College of Science, Kirkuk University, Kirkuk, Iraq
*Corresponding author. E-mail address:
alitaqi@uokirkuk.edu.iq;
alitaqibayati@yahoo.com
Abstract: Properties of the ground states and transitions in 40Ca and 48Ca nuclei are studied using the self-consistent Hartree-Fock and random phase approximation calculations with Skyrme-type interactions: KDE0, SLy4, LNS, RAPT and T6. The purpose of the paper is to obtain the best Skyrme-force parameterizations for description of the experimental data. All the calculated values were compared with the available data. The calculated binding energy per nucleon, charge root mean square, ground charge density distribution and transition strength distribution agree very well with the experimental data. The overall behavior of the calculated transition densities demonstrated the reliability of the method.
Keywords: charge density distribution, transition density, strength distribution, Skyrme - Hartree - Fock, random phase approximation.
References:1. P. Klupfel, P.G. Reinhard. Self-consistent mean-field models for nuclear structure and dynamics. Int. J. Mod Phys. E 16(4) (2007) 1009. https://doi.org/10.1142/S0218301307006460
2. P. Ring. Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 37 (1996) 193. https://doi.org/10.1016/0146-6410(96)00054-3
3. T. Abe et al. Monte Carlo Shell Model for ab initio nuclear structure. EPJ Web of Conferences 66 (2014) 02001. https://doi.org/10.1051/epjconf/20146602001
4. S. Peru, M. Martini. Mean field based calculations with the Gogny force: Some theoretical tools to explore the nuclear structure. Eur. Phys. J. A 50(5) (2014) 1. https://doi.org/10.1140/epja/i2014-14088-7
5. J.W. Negele. The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys. 54 (1982) 913. https://doi.org/10.1103/RevModPhys.54.913
6. J.R. Stone, P.-G. Reinhard. The Skyrme interaction in finite nuclei and nuclear matter. Prog. Part. Nucl. Phys. 58 (2007) 587. https://doi.org/10.1016/j.ppnp.2006.07.001
7. B.K. Agrawal, S. Shlomo, V. Kim Au. Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C 72 (2005) 014310. https://doi.org/10.1103/PhysRevC.72.014310
8. D. Vautherin, D.M. Brink. Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626
9. K.-F. Liu et al. Skyrme-Landau parameterization of effective interactions. (I). Hartree-Fock ground states. Nucl. Phys. A 534 (1991) 1. https://doi.org/10.1016/0375-9474(91)90555-K
10. K.-F. Liu, H. Luo, Zh. Ma. Skyrme-Landau parametrization of effective interactions. (II). Self-consistent description of giant multipole resonances. Nucl. Phys. A 534 (1991) 25. https://doi.org/10.1016/0375-9474(91)90556-L
11. P.G. Reinhard, H. Flocard. Nuclear effective forces and isotope shifts. Nucl. Phys. A 584 (1995) 467. https://doi.org/10.1016/0375-9474(94)00770-N
12. E. Chabanat et al. A Skyrme parametrization from subnuclear to neutron star densities. Nucl. Phys. A 627 (1997) 710. https://doi.org/10.1016/S0375-9474(97)00596-4
13. E. Chabanat et al. A Skyrme parametrization from subnuclear to neutron star densities. Part II. Nuclei far from stabilities. Nucl. Phys. A 635 (1998) 231. https://doi.org/10.1016/S0375-9474(98)00180-8
14. B.A. Brown. New Skyrme interaction for normal and exotic nuclei. Phys. Rev. C 58 (1998) 220. https://doi.org/10.1103/PhysRevC.58.220
15. P.-G. Reinhard et al. Shape coexistence and the effective nucleon-nucleon interaction. Phys. Rev. C 60 (1999) 014316. https://doi.org/10.1103/PhysRevC.60.014316
16. M. Bender, P.H. Heenen, P.G. Reinhard. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75 (2003) 121. https://doi.org/10.1103/RevModPhys.75.121
17. M. Dutra et al. Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85 (2012) 035201. https://doi.org/10.1103/PhysRevC.85.035201
18. M. Dutra et al. Relativistic mean-field hadronic models under nuclear matter constraints. Phys. Rev. C 90 (2014) 055203. https://doi.org/10.1103/PhysRevC.90.055203
19. P. Ring, P. Schuk. The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980). https://www.springer.com/us/book/9783540212065
20. J.R. Stone, P.-G. Reinhard. The Skyrme interaction in finite nuclei and nuclear matter. Prog. Part. Nucl. Phys. 58(2) (2007) 587. https://doi.org/10.1016/j.ppnp.2006.07.001
21. S. Goriely et al. Hartree-Fock mass formulas and extrapolation to new mass data. Phys. Rev. C 66 (2002) 024326. https://doi.org/10.1103/PhysRevC.66.024326
22. P. Klupfel et al. Variations on a theme by Skyrme: A systematic study of adjustments of model parameters. Phys. Rev. C 79 (2009) 034310. https://doi.org/10.1103/PhysRevC.79.034310
23. M. Kortelainen et al. Nuclear energy density optimization. Phys. Rev. C 82 (2010) 024313. https://doi.org/10.1103/PhysRevC.82.024313
24. N. Antonov, P.E. Hodgson, I. Zh. Petkov. Nucleon Momentum and Density Distribution in Nuclei (London: Oxford University Press, 1988). Google books
25. Ali H. Taqi. A visual Fortran 90 program for the two-particle or two-hole excitations of nuclei: The PPRPA program. SoftwareX 5 (2016) 51. https://doi.org/10.1016/j.softx.2016.04.003
26. C. Titin-Schnaider, Ph. Quentin. Coulomb exchange contribution in nuclear Hartree-Fock calculations. Phys. Lett. B 49(5) (1974) 397. https://doi.org/10.1016/0370-2693(74)90617-0
27. G. Colo et al. Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program. Comp. Phys. Comm. 184(1) (2013) 142. https://doi.org/10.1016/j.cpc.2012.07.016
28. P.J. Brussaard, P.W. Glaudemans. Shell Model Applications in Nuclear Spectroscopy (North-Holland: Amsterdam, 1977). Google books
29. M.N. Harakeh, A.M. Van Der Woude. Giant resonances: Fundamental High-Frequency Modes of Nuclear Excitations (London: Oxford University Press, 2001). OUP
30. L.G. Cao et al. From Brueckner approach to Skyrme-type energy density functional. Phys. Rev. C 73 (2006) 014313. https://doi.org/10.1103/PhysRevC.73.014313
31. M. Rayet et al. Nuclear force and the properties of matter at high temperature and density. Astronomy & Astrophysics 116 (1982) 183. Article
32. F. Tondeur et al. Static nuclear properties and the parametrisation of Skyrme forces. Nucl. Phys. A 420(2) (1984) 297. https://doi.org/10.1016/0375-9474(84)90444-5
33. National Nuclear Data Center (NNDC): http://www.nndc.bnl.gov
34. H. De Vries, C.W. De Jager, C. De Vries. Nuclear charge-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Table 36 (1987) 495. https://doi.org/10.1016/0092-640X(87)90013-1
35. Ali H. Taqi, S. Ali Mohamed. Self-consistent Hartree-Fock RPA calculations in 208Pb. Indian J. Phys. 92(1) (2017) 69. https://doi.org/10.1007/s12648-017-1073-4
36. Y.-W. Lui et al. Isoscalar giant resonances in 48Ca. Phys. Rev. C 83 (2011) 044327. https://doi.org/10.1103/PhysRevC.83.044327
37. D.H. Youngblood et al. Isoscalar E0 strength between 6 and 11 MeV in 40Ca. Phys. Rev. C 68 (2003) 057303. https://doi.org/10.1103/PhysRevC.68.057303
38. D.H. Youngblood, Y.-W. Lui, H.L. Clark. Isoscalar E0, E1, and E2 strength in 40Ca. Phys. Rev. C 63 (2001) 067301. https://doi.org/10.1103/PhysRevC.63.067301
39. D.H. Youngblood, Y.-W. Lui, H.L. Clark. Giant monopole resonance strength in 40Ca. Phys. Rev. C 55 (1997) 2811. https://doi.org/10.1103/PhysRevC.55.2811
40. V.A. Erokhova et al. Giant resonance in nuclei of calcium isotopes. Izv. Ross. Akad. Nauk, Ser. Fiz. 67 (2003) 1479 [Bull. Russ. Acad. Sci. Phys. 67 (2003) 1636]. https://inis.iaea.org/search/search.aspx?orig_q=RN:36079584