ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Double beta decay of 150Nd to the first excited 0+ level of 150Sm: Preliminary results
A. S. Barabash1, P. Belli2,3, R. Bernabei2,3, R. S. Boiko4,5, F. Cappella6, V. Caracciolo7, R. Cerulli2,3, F. A. Danevich4, A. Di Marco2,3, A. Incicchitti6,8, D. V. Kasperovych4,*, R. V. Kobychev4, V. V. Kobychev4, S. I. Konovalov1, M. Laubenstein7, D. V. Poda4,9, O. G. Polischuk4, V. I. Tretyak4, V. I. Umatov1
1 National Research Centre “Kurchatov Institute”, Institute of Theoretical and Experimental Physics, Moscow, Russia
2 INFN, sezione di Roma “Tor Vergata”, Rome, Italy
3 Dipartimento di Fisica, Universita di Roma “Tor Vergata”, Rome, Italy
4 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
5 National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
6 INFN, sezione di Roma, Rome, Italy
7 INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
8 Dipartimento di Fisica, Universita di Roma “La Sapienza”, Rome, Italy
9 CSNSM, Universite Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France
*Corresponding author. E-mail address:
dkasper@kinr.kiev.ua
Abstract: The double beta decay of 150Nd to the first excited 0+ level of 150Sm (Eexc = 740.5 keV) was investigated with the help of the ultra-low-background setup consisting of four HP Ge (high-purity germanium) detectors (≃225 cm3 volume each one) at the Gran Sasso underground laboratory of INFN (Italy). A highly purified 2.381-kg sample of neodymium oxide (Nd2O3) was used as a source of γ quanta expected in the decays. Gamma quanta with energies 334.0 keV and 406.5 keV emitted after deexcitation of the 01+ 740.5 keV excited level of 150Sm are observed in the coincidence spectra accumulated over 16375 h. The half-life relatively to the two neutrino double beta decay 150Nd → 150Sm(01+) is measured as T1/2 = [4.7+4.1-1.9(stat)±0.5(syst)]×1019 y, in agreement with results of previous experiments.
Keywords: double beta decay, 150Nd, low counting experiment.
References:1. V.I. Tretyak, Yu.G. Zdesenko, Tables of double beta decay data - an update. At. Data Nucl. Data Tables 80 (2002) 83. http://dx.doi.org/10.1006/adnd.2001.0873
2. R. Saakyan, Two-Neutrino Double-Beta Decay. Annu. Rev. Nucl. Part. Sci. 63 (2013) 503. http://dx.doi.org/10.1146/annurev-nucl-102711-094904
3. A.S. Barabash. Average and recommended half-life values for two-neutrino double beta decay. Nucl. Phys. A 935 (2015) 52. http://dx.doi.org/10.1016/j.nuclphysa.2015.01.001
4. J. Barea, J. Kotila, F. Iachello. Limits on Neutrino Masses from Neutrinoless Double-β Decay. Phys. Rev. Lett. 109 (2012) 042501. http://dx.doi.org/10.1103/physrevlett.109.042501
5. W. Rodejohann, Neutrinoless double-beta decay and neutrino physics. J. Phys. G 39 (2012) 124008. http://dx.doi.org/10.1088/0954-3899/39/12/124008
6. F.F. Deppisch, M. Hirsch, H. Päs. Neutrinoless double-beta decay and physics beyond the standard model. J. Phys. G 39 (2012) 124007. http://dx.doi.org/10.1088/0954-3899/39/12/124007
7. S.M. Bilenky, C. Giunti. Neutrinoless double-beta decay: A probe of physics beyond the Standard Model. Int. J. Mod. Phys. A 30 (2015) 1530001. http://dx.doi.org/10.1142/s0217751x1530001x
8. S. Dell'Oro et al. Neutrinoless Double Beta Decay: 2015 Review. AHEP 2016 (2016) 2162659. http://dx.doi.org/10.1155/2016/2162659
9. J.D. Vergados, H. Ejiri, F. Šimkovic. Neutrinoless double beta decay and neutrino mass. Int. J. Mod. Phys. E 25 (2016) 1630007. http://dx.doi.org/10.1142/s0218301316300071
10. J. Schechter, J.W.F. Valle. Neutrinoless double-β decay in SU(2)⨯U(1) theories. Phys. Rev. D 25 (1982) 2951. http://dx.doi.org/10.1103/physrevd.25.2951
11. F. Vissani. Solar neutrino physics on the beginning of 2017. Nucl. Phys. At. Energy 18 (2017) 5. https://doi.org/10.15407/jnpae2017.01.005
12. V.S. Kolhinen et al. Double-β decay Q value of 150Nd. Phys. Rev. C 82 (2010) 022501. http://dx.doi.org/10.1103/physrevc.82.022501
13. J. Meija et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report), Pure Appl. Chem. 88 (2016) 293. http://dx.doi.org/10.1515/ci-2016-3-415
14. V. Artemiev et al. Half-life measurement of 150Nd 2β2ν decay in the time projection chamber experiment. Phys. Lett. B 345 (1995) 564. http://dx.doi.org/10.1016/0370-2693(94)01609-g
15. A. De Silva et al. Double β decays of 100Mo and 150Nd. Phys. Rev. C 56 (1997) 2451. http://dx.doi.org/10.1103/physrevc.56.2451
16. R. Arnold et al. Measurement of the 2νββ decay half-life of 150Nd and a search for 0νββ decay processes with the full exposure from the NEMO-3 detector. Phys. Rev. D 94 (2016) 072003. http://dx.doi.org/10.1088/1742-6596/598/1/012015
17. S.K. Basu, A.A. Sonzogni. Nuclear data sheets for A = 150. Nucl. Data Sheets 114 (2013) 435. http://dx.doi.org/10.1016/j.nds.2013.04.001
18. A.S. Barabash et al. Double-beta decay of 150Nd to the first 0+ excited state of 150Sm. JETP Lett. 79 (2004) 10. http://dx.doi.org/10.1134/1.1675911
19. A.S. Barabash et al. Investigation of ββ decay in 150Nd and 148Nd to the excited states of daughter nuclei. Phys. Rev. C 79 (2009) 045501. http://dx.doi.org/10.1103/physrevc.79.045501
20. S. Blondel. Optimisation du blindage contre les neutrons pour le demonstrateur de SuperNEMO et analyse de la double desintegration beta du neodyme-150 vers les etats excites du samarium-150 avec le detecteur NEMO-3. PhD thesis, LAL, Orsay, France, LAL 13-154 (2013). https://tel.archives-ouvertes.fr/tel-00855279/document
21. M.F. Kidd et al. Two-neutrino double-β decay of 150Nd to excited final states in 150Sm. Phys. Rev. C 90 (2014) 055501. http://dx.doi.org/10.1103/physrevc.90.055501
22. O.G. Polischuk et al. Purification of lanthanides for double beta decay experiments. AIP Conf. Proc. 1549 (2013) 124. http://dx.doi.org/10.1063/1.4818091
23. R.S. Boiko. Chemical purification of lanthanides for low-background experiments. Int. J. Mod. Phys. A 32 (2017) 1743005. http://dx.doi.org/10.1142/s0217751x17430059
24. N.A. Danilov et al. Exhaustive removal of thorium and uranium traces from neodymium by liquid extraction. Radiochem. 53 (2011) 269. http://dx.doi.org/10.1134/s1066362211030076
25. M. Laubenstein et al. Underground measurements of radioactivity. Appl. Radiat. Isotopes 61 (2004) 167. http://dx.doi.org/10.1016/j.apradiso.2004.03.039
26. V.I. Tretyak. TS2 – interactive system for one-dimensional spectra processing. Preprint KINR-90-35 (Kyiv, 1990).
27. R.B. Firestone et al. Table of Isotopes. 8th ed. (New York, 1996) and CD update (1998). https://www.wiley.com//legacy/products/subject/physics/toi/
28. P. Belli et al. New observation of 2β2ν decay of 100Mo to the 01+ level of 100Ru in the ARMONIA experiment. Nucl. Phys. A 846 (2010) 143. http://dx.doi.org/10.1016/j.nuclphysa.2010.06.010
29. I. Kawrakow, D.W.O. Rogers. The EGSnrc code system: Monte Carlo simulation of electron and photon transport, NRCC Report PIRS-701, Ottawa, 2003. https://nrc-cnrc.github.io/EGSnrc/doc/pirs701-egsnrc.pdf
30. G. Feldman, R. Cousins. Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57 (1998) 3873. http://dx.doi.org/10.1103/physrevd.57.3873