ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Temperature features of molecules' dynamics in "heavy water - glycerol" solution
O. A. Vasylkevych*, V. I. SlisenkoAbstract: By the method of quasi-elastic scattering of slow neutrons, the dynamics of molecules of the solution "heavy water - glycerol" with glycerol concentration of 0.046 molar fractions has been studied in the temperature range (2 - 10) °Ñ. The features in the temperature dependence of total self-diffusion coefficient and its one-particle component are found: at 3 °C deep minimum is observed. In this case, the residence time of the molecule of glycerol in the vibrational state increases substantially. The analysis shows that these effects are due to increase in the intensity of the clustering processes at 3 °C.
Keywords: quasielastic scattering of slow neutrons, self-diffusion coefficient, single-particle and collective components of the coefficient of self-diffusion, molecule jump length.
References:1. M.F. Vuks. Scattering of Light in Gases, Liquids and Solutions (Leningrad: Izdatelstvo Leningradskogo universiteta, 1977) 318 p. (Rus)
2. L. Van Hove. Correlation in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95(1) (1954) 249. https://doi.org/10.1103/PhysRev.95.249
3. L. Van Hove. A remark on the time-dependent pair distribution. Physika 24 (1958) 404. https://doi.org/10.1016/S0031-8914(58)95629-5
4. I.I. Gurevich, L.V. Tarasov. Physics of Low-Energy Neutrons (Moskva: Nauka, 1965) 608 p. (Rus)
5. V.S. Oskotskij. To the theory of quasielastic scattering of cold neutrons in a liquid. Fizika Tverdogo Tela 5(4) (1963) 1082. (Rus)
6. G.K. Ivanov. Inelastic and elastic scattering of neutrons by molecules. J. Exp. Theor. Phys. (USSR) 50(3) (1966) 726. (Rus) http://www.jetp.ac.ru/cgi-bin/dn/e_023_03_0481.pdf
7. G.K. Ivanov. The role of diffusion processes in the scattering of slow neutrons in liquids. J. Exp. Theor. Phys. (USSR) 51(4) (1966) 1120. (Rus) http://www.jetp.ac.ru/cgi-bin/dn/e_024_04_0749.pdf
8. N.P. Malomuzh, I.Z. Fisher. Direct calculations of the self-diffusion coefficient in liquid argon. Ukr. J. Phys. 14(5) (1974) 851. (Rus)
9. S.A. Mikhajlenko, V.V. Yakuba. Rotational motion, self-diffusion and nuclear magnetic relaxation in liquid mixtures of methane-krypton. Ukr. J. Phys. 24(5) (1979) 612. (Rus)
10. S.A. Mikhajlenko, V.V. Yakuba. Self-diffusion and nuclear magnetic relaxation in liquid mixtures CH4-Kr. Ukr. J. Phys. 26(5) (1981) 784. (Rus)
11. S.A. Mikhajlenko, V.V. Yakuba. Self-diffusion and nuclear magnetic relaxation in liquid propylene. Ukr. J. Phys. 27(5) (1982) 712. (Rus)
12. L.A. Bulavin, G.N. Verbinskaya, V.T. Krotenko. One-particle and collective contributions to the self-diffusion coefficient of methyl alcohol. Fizika Zhidkogo Sostoyaniya 19 (1991) 40. (Rus)
13. L.A. Bulavin, T.V. Karmazina, V.V. Klepko, V.I. Slisenko. Neutron Spectroscopy of Condensed Environments (Kyiv: Akademperiodyka, 2005) 635 p. (Ukr)
14. A.P. Voiter et al. Multichannel analyser for the neutron time-of-flight spectrometer. Yaderna fizyka ta energetyka (Nucl. Phys. At. Energy) 11(1) (2010) 90. (Ukr) https://jnpae.kinr.kyiv.ua/11.1/Articles_PDF/jnpae-2010-11-0090-Voiter.pdf
15. V.Eu. Chechko et al. Clusterization and anomalies of fluctuations in water-alcohol solutions low concentrations. Journal of Physical Studies 7(2) (2003) 175. http://physics.lnu.edu.ua/jps/2003/2/abs/a175_183.html