ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Structure, morphology, thermal and conductivity properties of gel electrolyte system based on polyvinyl chloride and LiClO4
V. V. Klepko1, V. I. Slisenko2, K. M. Sukhyy3,*, S. D. Nesin1, V. L. Kovalenko3,4, Y. O. Serhiienko3, I. V. Sukha3Abstract: The dynamics of atoms and molecules in gel electrolyte based on polyvinyl chloride and a solution of LiClO4 in propylene carbonate was studied by the method of quasielastic scattering of slow neutrons. The coefficients of self-diffusion of atoms and molecules are determined and a possible variant of the mechanism of charge transport in this system is proposed.
Keywords: solid polymer electrolytes, polyvinyl chloride, X-ray scattering, calorimetric scattering, quasi-elastic neutron scattering.
References:1. F.M. Gray, J.A. Connor (ed.). Polymer Electrolytes (Cambridge, UK: Royal Society of Chemistry, 1997). 175 p.
2. M. Alamgir, K.M. Abraham (ed.). Lithium Batteries: New Materials, Developments, and Perspectives (Elsevier, Amsterdam-London-New York-Tokyo, 1994, Ch. 3, 93).
3. M. Alamgir, K.M. Abraham. Li Ion Conductive Electrolytes Based on Poly(vinyl chloride). J. Electrochem. Soc. 140 (1993) L96-L97. https://doi.org/10.1149/1.2221654
4. G. Pistoia, A. Antonioni, G. Wang. Impedance Study on the Reactivity of Gel Polymer Electrolytes towards a Lithium Electrode. J. Power Sources 58 (1996) 139. https://doi.org/10.1016/S0378-7753(96)02382-8
5. A.M. Sukeshini, A. Nishimoto, M. Watanabe. Transport and Electrochemical Characterization of Plasticized Poly(vinyl chloride) Solid Electrolytes. Solid State Ionics 86-88 (1996) 385. https://doi.org/10.1016/0167-2738(96)00156-7
6. P.H. Mutin, I.M. Guenet. Physical gels from PVC: Aging and Solvent Effects on Thermal Behavior, Swelling, and Compression Modulus. Macromolecules 22 (1989) 843. https://doi.org/10.1021/ma00192a055
7. S. Ohta, T. Kajiama, M. Takayanagi. Annealing Effect on the Microstructure of Poly(vinyl chloride. Polymer Engineering and Science 16(7) (1976) 465. https://doi.org/10.1002/pen.760160702
8. A. Nakajima, H. Hamada, M. Shayashi. Structure and Some Physical Properties of Polyvinyl Chloride Polymerized at Different Temperatures. Macromol. Chem. Phys. 95 (1966) 40. https://doi.org/10.1002/macp.1966.020950103
9. C.G. Vonk. Program for the Processing of Small Angle X-Ray Scattering Data, FFSAXSJ (Geelen, Netherlands, 1977).
10. A.K. Tripathi, R.K. Singh. Development of ionic liquid and lithium salt immobilized MCM-41 quasi solid-liquid electrolytes for lithium batteries. Journal of Energy Storage 15 (2018) 283. https://doi.org/10.1088/1361-6463/aaa56c
11. M. Safa, A. Chamaani, N. Chawla, B. El-Zahab. Polymeric Ionic Liquid Gel Electrolyte for Room Temperature Lithium Battery Applications. Electrochem. Acta 213 (2016) 587. http://dx.doi.org/10.1016/j.electacta.2016.07.118
12. M.V. Burmistr et al. Structure, thermal and ion-conductivity properties of the polymeric quaternary ammonium salts (polyionenes) containing ethylene oxide and aliphatic fragments in the chain. Solid State Ionics 176 (2005) 1787. https://doi.org/10.1016/j.ssi.2005.04.032
13. D. Devaux et al. Crosslinked perfluoropolyether solid electrolytes for lithium ion transport. Solid State Ionics 310 (2016) 71. http://dx.doi.org/10.1016/j.ssi.2017.08.007
14. Y. Melnichenko, L. Bulavin. Self-diffusion of Water in Gelatin Gels: 2. Quasi-clastic Neutron Scattering Data. Polymer 32 (1991) 3295. https://doi.org/10.1016/0032-3861(91)90530-V