![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
On possibility to detect solar neutrinos with the help of CdWO4 scintillators
A. Sh. Georgadze, V. V. Kobychev, O. A. Ponkratenko
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: The possibility to use large amount of CdWO4 crystal scintillators to detect solar neutrino of low energies via neutrino capture reactions on 116Cd is investigated. The detector concept is based on placing CdWO4 crystals in liquid scintillator inside the sphere of 18 m in diameter, on which 9500 photomultipliers are installed. Such design makes possible to reconstruct the event position inside CdWO4 crystal with accuracy 1 mm for 1 MeV electrons. Thus, expected background from random signal coincidences can be reduced to the rate ∼300 events per year, which is of the same order of magnitude as the expected neutrino signal (260 ± 65 events per year in 30 ton of CdWO4), taking into account neutrino detection efficiency.
References:1. Davis R., Jr. Solar Neutrinos. II. Experimental. Phys. Rev. Lett. 12 (1964) 303. https://doi.org/10.1103/PhysRevLett.12.303
2. Hampel W., Handt J., Heusser G. et al. GALLEX Collaboration. Phys. Lett. B 447 (1999) 127. https://doi.org/10.1016/S0370-2693(98)01579-2
3. Anselmann P., Hampel W., Heusser G. et al. Update of GALLEX solar neutrino results and implications. Nucl. Phys. B (Proc. Suppl.) 38 (1995) 68. https://doi.org/10.1016/0920-5632(94)00735-E
4. Gavrin V. SAGE Collaboration. Solar neutrino results from SAGE. Nucl. Phys. B (Proc. Suppl.) 91 (2001) 36. https://doi.org/10.1016/S0920-5632(00)00920-8
5. Fukuda Y., Hayakawa T., Ichihara E. et al. Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 81 (1998) 1562; https://doi.org/10.1103/PhysRevLett.81.1562
Fukuda Y., Hayakawa T., Ichihara E. et al. Constraints on Neutrino Oscillation Parameters from the Measurement of Day-Night Solar Neutrino Fluxes at Super-Kamiokande. Phys. Rev. Lett. 82 (1999) 1810; https://doi.org/10.1103/PhysRevLett.82.1810
Fukuda Y., Hayakawa T., Ichihara E. et al. Measurement of the Solar Neutrino Energy Spectrum Using Neutrino-Electron Scattering. Phys. Rev. Lett. 82 (1999) 2430. https://doi.org/10.1103/PhysRevLett.82.2430
6. Ahmad Q. R., Allen R. C., Andersen T. C. et al. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89 (2002) 011301; https://doi.org/10.1103/PhysRevLett.89.011301
Ahmad Q. R., Allen C. R., Andersen T. C. et al. Phys. Rev. Lett. 87 (2001) 071301. https://doi.org/10.1103/PhysRevLett.87.071301
7. Bahcall J. N., Pinsonneault M. H., Basu S. Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties. Astrophysical J. 555 (2001) 990; https://doi.org/10.1086/321493
Bahcall J. N., Pinsonneault M. H. Solar models with helium and heavy-element diffusion. Rev. Mod. Phys. 67 (1995) 781; https://doi.org/10.1103/RevModPhys.67.781
Bahcall J. N., Ulrich R. C. Solar models, neutrino experiments, and helioseismology. Rev. Mod. Phys. 60 (1988) 297. https://doi.org/10.1103/RevModPhys.60.297
8. Turck-Chieze S., Däppen W., Fossat E., Provost J. et al. The solar interior. Phys. Rep. 230 (1993) 57. https://doi.org/10.1016/0370-1573(93)90020-E
9. Takaaki K. Nucl. Phys. B (Proc. Suppl.) 77 (1999) 123; https://doi.org/10.1016/S0920-5632(99)00407-7
Fukuda Y., Hayakawa T., Ichihara E. et al. Measurement of the Flux and Zenith-Angle Distribution of Upward Throughgoing Muons by Super-Kamiokande. Phys. Rev. Lett. 82 (1999) 2644. https://doi.org/10.1103/PhysRevLett.82.2644
10. Ambrosio M., Antolini R., Bakari D. et al. Atmospheric neutrino oscillations from upward throughgoing muon multiple scattering in MACRO. Phys. Lett. B 566 (2003) 35. https://doi.org/10.1016/S0370-2693(03)00806-2
11. Ahn M. H., Aoki S., Bhang H. et al. Indications of Neutrino Oscillation in a 250 km Long-baseline Experiment. Phys. Rev. Lett. 90 (2003) 041801. https://doi.org/10.1103/PhysRevLett.90.041801
12. Eguchi K., Enomoto S., Furuno K. et al. First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance. Phys. Rev. Lett. 90 (2003) 021802. https://doi.org/10.1103/PhysRevLett.90.021802
13. Ahmed S. N., Anthony A. E., Beier E. W. et al. Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity. Phys. Rev. Lett. 92 (2004) 181301. https://doi.org/10.1103/PhysRevLett.92.181301
14. Aharmim B., Ahmed S. N., Anthony A. E. et al. Electron Energy Spectra, Fluxes, and Day-Night Asymmetries of 8B Solar Neutrinos from the 391-Day Salt Phase SNO Data Set. Phys. Rev. C 72 (2005) 055502. https://doi.org/10.1103/PhysRevC.72.055502
15. Bahcall J. N., Pena-Garay C. Global analyses as a road map to solar neutrino fluxes and oscillation parameters. J. High Energy Phys. 11 (2003) 004. https://doi.org/10.1088/1126-6708/2003/11/004
16. Alimonti G., Arpesella C., Back H. et al. Science and technology of Borexino: a real-time detector for low energy solar neutrinos. Astroparticle Physics 16 (2002) 205. https://doi.org/10.1016/S0927-6505(01)00110-4
17. Raghavan R. S. Phys. Rev. Lett. 37 (1976) 259; https://doi.org/10.1103/PhysRevLett.37.259
Raghavan R. S., Pakvasa S., Brown B. A. New Tools for Solving the Solar-Neutrino Problem. Phys. Rev. Lett. 57 (1986) 1801. https://doi.org/10.1103/PhysRevLett.57.1801
18. Ejiri H., Engel J., Hazama R. et al. Spectroscopy of Double-Beta and Inverse-Beta Decays from 100Mo for Neutrinos. Phys. Rev. Lett. 85 (2000) 2917. https://doi.org/10.1103/PhysRevLett.85.2917
19. Suzuki Y. Proc. Int. Workshop on Low Energy Solar Neutrinos, LowNu2, 4 - 5 Dec. 2000, Tokyo, Japan. Ed: Y. Suzuki (Singapore: World Scientific, 2001). https://doi.org/10.1142/9789812793942_0014
20. Zuber K. Spectroscopy of low energy solar neutrinos using CdTe detectors. Phys. Lett. B 571 (2003) 148. https://doi.org/10.1016/j.physletb.2003.07.070
21. Danevich F. A., Georgadze A. Sh., Kobychev V. V. et al. Phys. Rev. C 68 (2003) 035501. https://doi.org/10.1103/PhysRevC.68.035501
22. Bellini G., Caccianiga B., Chen M. et al. Eur. Phys. J. C 19 (2001) 43. https://doi.org/10.1007/s100520100594
23. Гротц К., Клапдор-Клайнгротхаус Г. В. Слабое взаимодействие в физике ядра, частиц и астрофизике (Москва: Мир, 1992) 451 с.
24. Table of Isotopes. Ed. By V. S. Shirley (New York, 1996).
25. Danevich F. A., Georgadze A. Sh., Kobychev V. V. et al. Phys. Rev. C 62 (2000) 045501. https://doi.org/10.1103/PhysRevC.62.045501
26. Георгадзе А. Ш., Даневич Ф. А., Здесенко Ю. Г. и др. Результаты исследований 2β-распада 116Cd с помощью сцинтилляторов 116CdWO4. Ядерная физика 58 (1995) 1170.
27. Bhattacharya M., Garci'a A., Hindi M. M. et al. Phys. Rev. C 58 (1998) 1247. https://doi.org/10.1103/PhysRevC.58.1247
28. Dorenbos P., de Hass J. T. M., van Eijk C. W. E. IEEE Trans. Nucl. Sci. 42 (1995) 2190; https://doi.org/10.1109/23.489415
Kinloch D. R., Novak W., Raby P., Toepke I. IEEE Trans. Nucl. Sci. 41 (1994) 752. https://doi.org/10.1109/23.322800
29. The SNO Collaboration. The Sudbury Neutrino Observatory. Nuclear Instruments and Methods in Physics Research A 449 (2000) 172. https://doi.org/10.1016/S0168-9002(99)01469-2
30. Ponkratenko O. A., Tretyak V. I., Zdesenko Yu. G. Event Generator DECAY4 for Simulating Double-Beta Processes and Decays of Radioactive Nuclei. Phys. of Atomic Nuclei. 63 (2000) 1282. https://doi.org/10.1134/1.855784
31. Георгадзе А. Ш., Даневич Ф. А., Здесенко Ю. Г. и др. Бета-распад 113Cd. Ядерная физика 59 (1996) 5.
32. Yoshida S., Kishimoto T., Ogawa I. et al. CANDLES project for double beta decay of 48Ca. Nuclear Physics B (Proc. Suppl.) 138 (2005) 214. https://doi.org/10.1016/j.nuclphysbps.2004.11.051