![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Planar sensors for dosimetry in mixed gamma-neutron fields
I. E. Anokhin1, O. S. Zinets1, A. B. Rosenfeld2, M. Yudelev2, V. L. Perevertailo3
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
3Research Institute of Microdevices, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: Circular silicon p-i-n diodes fabricated by planar technology have been studied. The diodes allow simultaneously measurements of neutron doses and gamma dose rates in mixed fields. The neutron dose is determined from the shift of the forward current voltage characteristic. Gamma dose is obtained from measurements of the ionization current in the photodiode mode. Small sizes of sensors (few millimeters) allow measuring the spatial distribution of radiation fields.
References:1. Sze S. M. Physics of Semiconductor Devices (Wiley, New York, 1981).
2. Knoll G. F. Radiation Detection and Measurement (Wiley, New York, 1989).
3. Carroll &Ramsey Associates. http://www.carrollramsey.com/
4. Голубев В. П. Дозиметрия и защита от ионизирующих излучений (Mосква: Атомиздат, 1971).
5. Swartz J. M., Thurston M. O. Analysis of the Effect of Fast-Neutron Bombardment on the Current-Voltage Characteristic of a Conductivity-Modulated p-i-n Diode. J. Appl. Phys. 37 (1966) 745. https://doi.org/10.1063/1.1708249
6. Анохин И. Е., Зинец О. С., Литовченко П. Г. и др. Влияние облучения быстрыми нейтронами на характеристики длинных p-i-n диодов. Препр. АН УССР. Ин-т ядерных исслед. КИЯИ-88-45 (Киев, 1988) 20 с.
7. Rosenfeld A., Anokhin I., Zinets O. et al. Application of P-I-N Diodes and Mosfets for Dosimetry in Gamma and Neutron Radiation Fields. Rad. Prot. Dosim. 84 (1999) 349. https://doi.org/10.1093/oxfordjournals.rpd.a032753
8. Rosenfeld A. B., Anokhin I. E., Zinets O. S. et al. Neutron dosimetry with planar silicon p-i-n diodes. IEEE Trans. on Nucl. Sci. 50 (2003) 2367. https://doi.org/10.1109/TNS.2003.821390
9. Rosenfeld A. B., Yudelev M., Alyousef K. et al. Application of semiconductors for dosimetry of fast-neutron therapy beam. Rad. Prot. Dosimetry 110 (2004) 573. https://doi.org/10.1093/rpd/nch223
10. Hough J. H. A Model Lead Attenuation Methods to Determine the Fast Neutron Sensitivity kU of a Photon Dosemeter. Phys. Med. Biol. 24 (1979) 734. https://doi.org/10.1088/0031-9155/24/4/005
11. Maughan R. L., Powers W. E., Blosser H. G. A superconducting cyclotron for neutron radiation therapy. Med. Phys. 21 (1994) 779. https://doi.org/10.1118/1.597337
12. Maughan R. L., Yudelev M. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron. Med. Phys. 22 (1995) 1459. https://doi.org/10.1118/1.597570
13. Maughan R. L., Blosser G. F., Blosser E. B. et al. A multirod collimator for neutron therapy. Int. J. Rad. Onc. Biol. Phys. 34 (1996) 411. https://doi.org/10.1016/0360-3016(95)02058-6
14. Rozenfeld A. B., Yudelev M., Alyousef K. et al. Single Sensors for Separate Neutron and Gamma Dosimetry in Mixed Radiation Fields. Nuclear Science Symposium & Medical Imaging Conference 2005, report N23-1.