УДК 621.315.592.2, 534.2

ВПЛИВ УЛЬТРАЗВУКУ НА ЕЛЕКТРИЧНУ АКТИВНІСТЬ РАДІАЦІЙНИХ ДЕФЕКТІВ У 7-ОПРОМІНЕНИХ КРИСТАЛАХ КРЕМНІЮ *п*-ТИПУ

В. М. Бабич¹, О. П. Долголенко², Я. М. Оліх¹, М. Д. Тимочко¹

¹ Інститут фізики напівпровідників ім. В. Є. Лашкарьова НАН України, Київ ² Інститут ядерних досліджень НАН України, Київ

Досліджено вплив ультразвукової (УЗ) обробки ($f = 5 \div 15 \text{ M}\Gamma\mu$, $W \le 2 \text{ Br/cm}^2$, $t \approx 10^4 \text{ c}$) на перебудову радіаційних дефектів (РД) у кристалах *n*-Si з високою концентрацією кисню (9,5 · 10¹⁷ см⁻³), опромінених γ -квантами ⁶⁰Со дозами 10⁸ і 10⁹ рад. Виявлено зміни температурних (100 - 300 K) залежностей концентрації n(T) та рухливості носіїв заряду $\mu(T)$ після проведених γ -опромінень (незворотні зміни) та УЗ обробок (зворотні). Із теоретичних розрахунків n(T) визначено енергетичні положення дефектних рівнів E_a^i та їх концентрації N_a^i . Обговорюється можливість акустостимульованої перебудови виявлених РД (дивакансії V_2^- , $E_a^{-1} = (E_c - 0,424 \text{ eB})$, модифікованого *A*-центра (V - O), $E_a^{-2} = (E_c - 0,205 \text{ eB})$ і комплексу, що може містити азот (? + N), $E_a^{-3} = (E_c - 0,19 \text{ eB})$) шляхом зміни конфігурації, структури та зарядженості на прикладі дворівневої енергетичної конфігураційнокоординатної моделі.

Вступ

Відомо, що ультразвукові (УЗ) хвилі активно взаємодіють із системою дефектів кристала і можуть бути використані для досліджень властивостей дефектів структури. Поширення УЗ хвилі в кристалі може приводити до модуляції рівноважної концентрації точкових дефектів і їх комплексів, а також до перерозподілу і/або переорієнтації дефектів у просторі [1]. Для того щоб створити електрично- та оптично-активні центри, які були б і акустично-чутливими, використовують дію жорсткого випромінювання (у-променів, електронів високих енергій, нейтронів тощо) [2]. У результаті опромінення виникає цілий спектр радіаційних дефектів (РД), який в основному визначається комплексами вторинних дефектів (дивакансії, А- та Е-центри, інші метастабільні комплекси) [3]. Інтерес до таких дефектів обумовлений, з практичної точки зору, можливістю використання явища метастабільності та бістабільності для створення елементів пам'яті нового покоління [4], зокрема можливістю керування станом дефектів, а значить, і властивостями матеріалу та характеристиками приладів за допомогою ультразвуку [2].

Отже, метою даної роботи було виявлення та дослідження процесів перебудови РД під дією УЗ обробки в кристалах кремнію *n*-типу, а також з'ясування механізму даної взаємодії.

Експеримент

Досліджувались зразки бездислокаційного кристала кремнію *n*-типу, виготовлені за методом Чохральського *n*-Si-*Cz*: $P(n = (2,5 \pm 0,5) \times (10^{14} \text{ cm}^{-3}))$ з питомим опором $\rho = 35 \text{ Ом} \cdot \text{см}$ та фоновими домішками $N_0 = 9,5 \cdot 10^{17} \text{ cm}^{-3}$, $N_C = 3,0 \cdot 10^{16} \text{ cm}^{-3}$).

Для створення в кристалах n-Si "акустоактивних" дефектів, електричною активністю яких можна було б керувати УЗ обробкою, зразки при кімнатній температурі опромінювались у-квантами ⁶⁰Со дозами: $D_1 \sim 10^8$ рад $\approx 1,93 \cdot 10^{17}$ у/см² i $D_2 \sim 10^9$ рад $\approx 1.93 \cdot 10^{18} \, \gamma/\text{см}^2$. Було проведено дослідження зразків до і після опромінення, а також після УЗ обробки (повздовжні хвилі, частота 5÷15 МГц, інтенсивність ≤2 Вт/см², тривалість обробки $\sim 10^4$ с, температура нагріву < 70 °C) одразу після обробки та через три доби. Вимірювання концентрації та рухливості проводились методом ефекту Холла в температурному діапазоні 100 ÷ 300 К на стандартних прямокутних зразках у режимі постійного струму і постійного магнітного поля 0,45 Тл із точністю 3 %. Омічні контакти створювались втиранням евтектичної суміші золота і кремнію при 450 °С [5].

Температурні залежності концентрації та рухливості *n*-Si

У вихідних зразках концентрація електронів, що визначалась за формулою $n = r_{\rm H} / e \cdot R_{\rm H}$, у досліджуваному температурному інтервалі відповідає повній іонізації мілких донорів (атомів фосфору): $n = 2,54 \cdot 10^{14}$ см⁻³ (рис. 1, *a*, крива *I*).

Після опромінення γ -квантами Со⁶⁰ дозами ~10⁸ рад та ~10⁹ рад на температурній залежності концентрації електронів проявляються рівні, пов'язані з утворенням РД (див. рис. 1, *a*, криві 2 і 4). Причому нахил залежностей для двох доз різний, що говорить про різні концентрації утворення одних і тих же дефектів [3]. Слід відзначити, що характер $\mu(T)$ після опромінення як дозою 10⁸, так і дозою 10⁹ рад має схожий вигляд (див. рис. 1, δ , криві 2 і 4), а саме описується різким спадом при зниженні температури до 100 - 135 К, причому нахил $\mu(T)$ значно крутіший від залеж-

Рис. 1. Температурні залежності концентрації (*a*) та рухливості (δ) носіїв заряду у зразку Si-Cz *n*-типу на різних етапах γ -опромінення та наступної ультразву-кової обробки. *l* - вихідний зразок; *2* - після $\gamma_1(10^8 \text{ рад})$ опромінення; *3* - після УЗО γ_1 -опроміненого зразка; *4* - після $\gamma_2(10^9 \text{ рад})$ опромінення; *5* - після УЗО γ_2 -опроміненого зразка.

Внесені радіаційні порушення стійкі і залишаються стабільними протягом більше річної витримки кристала при кімнатній температурі.

Для зразків *n*-Si після дози 10⁸ рад було проведено ультразвукову обробку (УЗО). У результаті її дії відбувається зменшення нахилу n(T), а також збільшення величини $\mu(T)$ та її зсув в область низьких температур (див. рис. 1, криві 3). Після другого етапу опромінення 10⁹ рад (див. рис. 1, криві 5) відбуваються подібні процеси: також зменшується нахил n(T) і відбувається зростання $\mu(T)$ після дії УЗО. Виміри, зроблені через декілька днів, показали зворотні зміни n(T)і $\mu(T)$ - у напрямку повернення до вихідних залежностей, установлених після γ-опромінення. Наступні виміри, зроблені через два місяці, показали повну релаксацію дії УЗ обробки. Впливу УЗ обробки на вихідні, термовідпалені (при 650 °C та 700 °C), а також на нейтронноопромінені зразки не виявлено.

Теоретичний аналіз температурних залежностей концентрації та рухливості

3 метою визначення концентрації N_a^{i} і енергетичного положення рівнів Е_aⁱ електрично активних РД у досліджуваних зразках нами проведено теоретичний аналіз n(T), а також ідентифікацію відповідних дефектів. Вважаючи n-Si невиродженим ($N_d < 10^{15}$ см⁻³), припустимо, що γ -кванти ⁶⁰Со рівномірно створюють точкові дефекти акцепторного типу з концентрацією N_a < N_d. При підвищенні температури зразка n-Si від 100 К концентрацію електронів n(T) у зоні провідності в результаті теплового збудження електронів з рівня E_aⁱ можна визначити, якщо врахувати сумарну концентрацію носіїв $n_0(T)$, $n_1(T)$, $n_2(T)$, які будуть постачатися в зону провідності при тепловій іонізації відповідних акцепторних рівнів (А-центрів, дивакансій та ін.):

$$n(T) = n_0(T) + n_1(T) + n_2(T) - 2N_d + N_a, \qquad (1)$$

де $n_i(T)$ – складові концентрації носіїв у зоні провідності за рахунок теплової іонізації відповідних глибоких акцепторних рівнів (i = 0, 1, 2).

Розрахунок $n_i(T)$ проводився за допомогою системи рівнянь [7]

$$n_{i}(T) = \frac{1}{2} \cdot \left(N_{d} - N_{a}^{\ i} - n_{11}^{\ i} \right) \times$$

$$\times \left(\sqrt{1 + \frac{4 \cdot N_{d} \cdot n_{11}^{\ i}}{\left(N_{d} - N_{a}^{\ i} - n_{11}^{\ i} \right)^{2}}} + 1 \right),$$
(2)

де $n_{11}^{i} = g \cdot N_c \cdot \exp\left(-\frac{E_a^{i}}{kT}\right); g = 2 - \phi$ актор виро-

дження акцепторного рівня; N_d , N_a^i – концентрації чистих донорів і радіаційних акцепторів; N_c – густина станів у зоні провідності; n_{11}^i – концентрація електронів у зоні провідності при збігу положень рівня Фермі та акцепторного рівня.

Проведено теоретичний розрахунок n(T) – суцільні лінії на експериментальних залежностях концентрації (див. рис. 1, *a*, криві 2 - 5). N_a^i знаходяться шляхом співставлення розрахованих залежностей n(T) з експериментальними. При цьому задаються енергетичні положення 3 акцепторних рівнів E_a^i (*i* = 0, 1, 2) і підбираються відповідні їм концентрації N_a^i за допомогою системи рівнянь (2) для кожного дефектного рівня до повного збігу розрахованої теоретичної кривої з експериментальними точками. Знайдені значення $E_a^{\ i}$ та $N_a^{\ i}$ наведено в табл. 1.

При обчисленні $\mu(T)$ нами враховано два основних механізми розсіювання носіїв заряду: на акустичних фононах та іонізованих домішках за допомогою формули Брукса - Херінга [6]

$$\mu_{I} = \frac{3.68 \cdot 10^{20} \cdot \left(\frac{\kappa}{16}\right)^{2} \cdot \frac{1}{Z^{2}} \left(\frac{T}{100}\right)^{3/2}}{N_{I} \cdot A},$$
 (3)

$$A = \sqrt{\frac{m}{m_0}} \left[\log(1+b^2) - \frac{0.434 \cdot b}{1+b^2} \right]$$
$$b = \frac{1}{Z} \frac{\kappa}{16} \frac{T}{100} \left(\frac{2.35 \cdot 10^{19}}{N_I} \right)^{\frac{1}{3}}.$$

Тут κ – діелектрична проникливість, а Z – заряд на домішці.

Таблиця 1. Розраховані значення глибини рівнів E_aⁱ та їх концентрації N_aⁱ для електрично активних дефектів, які визначають провідність γ-опромінених зразків n-Si; значення концентрацій кисню і вуглецю (N₀, N_C) у вихідних зразках відповідно

де

Зразок	Стан зразка	Номери кри- вих на рис. 1	$E_a^{\ i}$, eB	$N_a^{\ i}, 10^{13} \ \mathrm{cm}^{-3}$	Тип дефекту
$n_0 = 2,54 \cdot 10^{14} \text{ cm}^{-3}$ $N_0 = 9,5 \cdot 10^{17} \text{ cm}^{-3}$ $N_C = 3,0 \cdot 10^{16} \text{ cm}^{-3}$	Вихідний	1			
	D_1	2	E_c -0,405 E_c -0,205 E_c -0,190	11,9 13,2 0,5	? + O _i [6] V - O [7] ? + N [8]
	<i>D</i> ₁ + УЗО	3	E_c -0,405 E_c -0,205 E_c -0,190	14,4 9,0 2,0	? + O _i [6] V - O [7] VO + N
	D_2	4	<i>E_c</i> -0,424 <i>E_c</i> -0,261	13,4 12,6	$V_2^{-}[7, 9]$ $V_2^{-}[7]$
	<i>D</i> ₂ + УЗО	5	E_c -0,424 E_c -0,261 E_c -0,240	13,9 9,5 2,6	$V_{2}^{-}[7, 9]$ $V_{2}^{-}[7]$ $V_{2}^{-} + C$

Рухливість при розсіюванні на коливаннях кристалічної гратки обчислювалася за формулою $\mu_n = 2.3 \cdot 10^9 \cdot T^{-2.6}$. Загальну рухливість можна наближено знайти за допомогою правила Маттісена

$$\mu_{tot} = \frac{\mu_I \cdot \mu_n}{\mu_I + \mu_n} \,. \tag{4}$$

Розрахунки рухливості, проведені вказаним способом, були співставлені з експериментальними даними для радіаційно-опромінених та оброблених ультразвуком зразків (табл. 2). Урахування двох механізмів розсіювання дає змогу лише наближено оцінити кількість розсіюючих центрів. При низьких температурах (100 - 135 К) переважає розсіювання на іонізованих домішках, а при зростанні температури до кімнатної зростає внесок коливань кристалічної ґратки. Обчислення рухливості згідно з формулами (3) і (4) показало, що модель Брукса - Херінга розсіювання на іонізованих домішках [6] справедлива в області максимуму температурної залежності рухливості носіїв заряду, що дало змогу оцінити концентрацію іонізованих домішок. За найкращим узгодженням теоретичних кривих з експериментальними даними оцінювалися значення N_a^i і N_d

Обговорення отриманих результатів

Відомо, що в результаті вирощування кристалів кремнію виникають різні ростові неоднорідності: преципітати, страти, включення сторонніх атомів, таких як кисень і вуглець (так звані фонові домішки), які можуть бути електричнонейтральними й при гальваномагнітних вимірюваннях себе не проявляють [8]. У результаті у-опромінення однорідно по всьому об'єму кристала утворюються РД: дивакансії, А-центри, Р_s-С_i-центри та інші точкові дефекти. Безумовно, розподіл цих дефектів також координується з уже існуючими ростовими неоднорідностями в кристалі, збільшуючи тим самим локально напружені області та концентрацію РД у метастабільному стані. У цих областях дія УЗ обробки на РД теж підсилюється в результаті адитивності полів УЗ напружень та первісних ростових неоднорідностей. Отже, ефект УЗ дії полягає в зміні

електричної активності РД, створених у локально напружених областях, та наступної релаксації електрофізичних характеристик після припинення дії УЗ, що в цілому визначається комплексом перелічених вище факторів. Це узгоджується з експериментальними залежностями $\mu(T)$ для зразків, які пройшли як термообробку, так і різні види опромінювання (рис. 2).

Таблиця 2. Значення рухливості носіїв заряду µ т	а концентрації іонізованих домішок N _I
при різних обробках з	разків Si-Cz

Стан зразка	Номери кривих на рис. 2	<i>Т_{макс},</i> К	$\mu_{\scriptscriptstyle Makc},\mathrm{cm}^2/\mathrm{B}{\cdot}\mathrm{c}$	r	<i>N_I (µ),</i> 10 ¹⁵ см ⁻³	$N_I(n),$ 10 ¹⁵ см ⁻³
Вихідний	1	40	37790		2,2	
D_1	4	135	4500	2,57	20 - 30	0,51
$D_1 + V3O$	5	113 135(макс. ү ₁)	5260 4730	1,14	12 - 15	0,508
D_2	-	121	4100	1,86	20 - 30	0,514
<i>D</i> ₂ + УЗО	-	107 121(макс. ү ₂)	5440 4800		5 - 6	0,514
Відпал 650 °C 100 год	2	50	18220			
Відпал 700 °C 40 год	3	67	11920			
n-опромінення	6	225	1940			
Відпал 450 °С	7	127	4610			

Примітка. $\mu_{\text{макс}}$ – максимальне значення рухливості при $T_{\text{макс}}$; г – ступінь залежності $\mu \sim T^r$ в області розсіювання на іонізованих домішках; $N_I(n)$ – концентрація іонізованих домішок, отримана із залежності n(T) за формулою (2), $N_I(\mu)$ – із залежності $\mu(T)$ за формулою (3).

Рис. 2. Порівняння температурних залежностей концентрації (*a*) та рухливості (б) для зразків Si-Cz *n*-типу провідності після різного виду обробок. *l* - вихідний зразок; *2* - після відпалу при 650 °C, 100 год; *3* - після відпалу при 700 °C, 40 год; *4* - після $\gamma_1(10^8 \text{ рад})$ опромінення; *5* - після УЗО γ_1 -опроміненого зразка; *6* - після нейтронного (5 · 10¹⁴ н/см²) опромінення; *7* - після відпалу 450 °C, 15 год нейтронно-опроміненого *p*-Si.

Для встановлення природи центрів розсіювання носіїв заряду проведено співставлення (порівняння) експериментальних залежностей $\mu(T)$ для зразків, які виготовлені на основі вихідного кристала кремнію, але містять мікродефекти різної природи. На рис. 2 наведено залежності $\mu(T)$, отримані для зразків *n*-Si-*Cz*:Р як для вихідного матеріалу (крива *I*), так і для зразків, які пройшли тривалий (100 год) відпал при T = 650 °C (крива 2) та при T = 700 °C (40 год) (крива 3), тобто при наявності в зразках кисневих преципітатів різних розмірів та концентрацій. Тут же зображено відповідні залежності для зразка, опроміненого γ -дозою 10⁸ рад та оброблено-го УЗ (криві 4 і 5 на рис. 2 відповідно). Для порівняння з дією γ -опромінення на рис. 2 (крива 6)

представлено результат дії нейтронного опромінення. Крива 7 ілюструє залежність $\mu(T)$ для випадку сильно компенсованого матеріалу *n*-Si, причому вихідним матеріалом був слабо легований *p*-Si(B)-*Cz* з $N_a = 10^{15}$ см⁻³, а компенсація за рахунок термодонорів створювалась відпалом при 450 °С тривалістю 10 - 15 год. Після таких відпалів зразок набуває в цілому п-типу провідності $n_e = N_{T \square} - N_a \approx (2-3) \cdot 10^{15} \text{ см}^{-3}$. Але оскільки кисень у кристалі розподілений неоднорідно як уздовж осі злитка (спостерігаються страти з періодичністю від долей міліметра до декількох міліметрів, залежно від умов росту), так і по діаметру злитка (зменшується вміст кисню в приповерхневих шарах кристала [8]), то й утворення областей *n*-типу за рахунок термодонорів теж матиме негомогенний характер [9]. У такому матеріалі ще залишаються об'ємні включення р-типу провідності, яким відповідають області в об'ємі зразка з малим вмістом кисню. Масштаби цих неоднорідностей значно перевищують розміри неоднорідностей, які пов'язані з преципітатами кисню; при $T_{eidn} \approx 650$ - 700 °C розміри преципітатів сягають 4 - 5 нм [8]. Це приводить, у першу чергу, до великих значень степеня r в залежності $\mu \sim T^r$ (крива 7 на рис. 2, б), тобто до більш значного впливу на $\mu(T)$, ніж ми мали при наявності в зразках преципітатів (див. криві 2, 3 та 7 на рис. 2, б відповідно). Із подальшого порівняння кривої 7 з кривою 4 видно, що в низькотемпературній області спаду $\mu(T)$ їх значення практично збігаються. Це вказує на те, що ефективність розсіяння носіїв струму у випадку у-опромінених зразків такого ж порядку (і можливо такої ж природи), як і для сильно компенсованих зразків кремнію, які мають у своєму об'ємі негомогенно-розподілені області просторового заряду *n*- і *p*-типу провідності. Оскільки у-опромінення приводить, практично, до однорідного по об'єму введенню РД, то відповідальними за неоднорідний розподіл в опромінених зразках мікродефектів із різним зарядовим станом (як вважають у [10]) можуть бути лише ростові дефекти або неоднорідності в розподілі фонових домішок, наприклад кисню чи вуглецю, які при взаємодії з первинними РД беруть участь у формуванні вторинних дефектів різної природи (акцепторів та донорів – А-центрів, Е-центрів, дивакансій тощо).

Для Si-Cz зразків за допомогою теоретичних розрахунків (формули (1) і (2)) встановлено, що в результаті γ_1 -опромінення ($D_1 \sim 10^8$ рад) такими, що визначають n(T), є акцепторні рівні $E_a^{-1} = (E_c - 0,424 \text{ eB}), E_a^{-2} = (E_c - 0,205 \text{ eB})$ і $E_a^{-3} = (E_c - 0,19 \text{ eB})$. Згідно з даними багатьох досліджень

[11, 13 - 16 та ін.] ці рівні E_a^{-1} , E_a^{-2} і E_a^{-3} можуть належати дивакансії V_2^- , *А*-центру (*V* - O) і невідомому комплексу, що може містити азот (? + N) відповідно (див. табл. 1). Слід зауважити, що більшість дослідників приписують *А*-центру рівень (E_c - 0,17 eB) або (E_c - 0,18 eB) [3, 4, 15, 16, 18]; проте в роботі [14] *А*-центру ставлять у відповідність і рівень (E_c - 0,204 eB). Ми ж схильні до думки, що рівень (E_c - 0,205 eB), який визначаємо в досліджуваних зразках методом Холла, є теж А-центром, але дещо модифікованим полем напружень домішкових атомів [18].

Спостережені при УЗО динамічні (зворотні) зміни n(T) найімовірніше виникають у результаті певних корегованих перетворень як дефектних комплексів, так і рухомих домішкових атомів [12]. Виходячи з наших результатів (див. табл. 1), можна певним чином конкретизувати даний механізм УЗ перетворень РД в *n*-Si. Як відомо, міжвузельні атоми азоту N_i і вуглецю C_i характеризуються малою енергією активації й достатньо рухомі вже при кімнатних температурах, а дія УЗ хвилі буде збільшувати їх коефіцієнти дифузії в локально-напружених областях і сприяти перебудові та переорієнтації утворених дефектних центрів. Тому вважаємо, що для зразків Si-Cz комплекс V - O (E_c - 0,205 eB) з вихідною концентрацією після γ_1 -опромінення $N_{(V-O)} = 13.2 \times$ $\times 10^{13}$ см⁻³ при УЗО модифікується атомом рухомої домішки (наприклад, азоту N) і перетворюсться в комплекс (VO + N) з рівнем ($E_c - 0.19 \text{ eB}$) [13]. Про це свідчить, зокрема, зменшення концентрації $N_{(V-O)} = 9,0 \cdot 10^{13} \text{ см}^{-3}$ і зростання $N_{(VO+N)}$ з 0,5 $\cdot 10^{13} \text{ см}^{-3}$ до 2,0 $\cdot 10^{13} \text{ см}^{-3}$ відповідно (див. табл. 1). Після припинення УЗО відбувається поступове "звільнення" атомів азоту і "повільне" повернення всієї системи дефектів у вихідний (до УЗО) стан.

Зі збільшенням дози опромінення зразків Si-Cz до $D_2 \sim 10^9$ рад у системі електрично-активних дефектів переважають дивакансії V2⁻ (Ec -- 0,261 eB) з концентрацією $N_{(V2)} = 12,6 \cdot 10^{13} \text{ см}^{-3}$. У цьому випадку більшість електронів знаходиться на більш глибокому рівні, а рівень А-центра (E_c - 0,204 eB) у даних холлівських вимірюваннях уже не проявляється. При УЗО, як і при відпалі дивакансій [17], найбільш рухомі атоми домішки, імовірно Сі, частково звільняються зі стоків і локалізуються поблизу V_2^- , збурюючи при цьому їх енергетичне положення. У результаті зменшується $N(V_2^{-}) = 9.5 \cdot 10^{13} \text{ см}^{-3}$ і виникає рівень $(V_2^- + C)$ $(E_c - 0.24 \text{ eB})$ 3 $2,6 \cdot 10^{13} \text{ см}^{-3}$. Після припинення УЗО атоми С_і покидають V2- і відбувається відновлення рівня $N(V_2^{-}) = 12,6 \cdot 10^{13} \text{ см}^{-3}$, система дефектів повертається у вихідний стан.

У цілому така акустостимульована поведінка досліджуваних електрично-активних дефектів узгоджується з моделлю модифікації А-центра домішковим атомом – модель Джеллісона (рис. 3) [18]. Дійсно, така модифікація під дією ультразвуку може відбуватися, якщо мігруючий атом домішки, наприклад вуглецю або азоту, при наближенні до дефектного центра "збурює" його енергетичне положення; унаслідок цього може відбуватися перерозподіл концентрації дефектів кристала між різними енергетичними станами та, відповідно, і зміна концентрація електронів у кристалі. Процес зворотної перебудови здійснюється шляхом відновлення термодинамічної рівноваги, але вже триваліший, оскільки відбувається без додаткової акустичної стимуляції.

Рис. 3. Модифікація А-центра за Джеллісоном: a - А-центр; δ - А-центр, модифікований домішкою з боку атома кисню; e - А-центр, модифікований домішкою з боку вакансії.

Отже, УЗ навантаження зразка приводить до зміни термодинамічної рівноваги системи РД, яка після вимкнення УЗ повертається до рівноважного положення. Для якісного представлення спостереженого явища розглянемо модель бістабільного дефекту в напівпровідниковому кристалі, електрична активність якого (положення відповідного енергетичного рівня в забороненій зоні) визначається його просторовою орієнтацією в гратці кристала [4, 19]. На рис. 4 наведено конфігураційно-координатну модель перерозподілу концентрації дефектів між різними енергетичними станами як без ультразвуку (а), так і при дії ультразвуку (б). Відомо, що ймовірність знаходження дефекту в тому чи іншому стані визначається висотою відповідного енергетичного бар'єра (див. рис. 4, а). При введенні в зразок інтенсивного ультразвуку відбувається збурення вихідного розподілу і, в результаті цього, зміщення енергетичних рівнів та відповідний перерозподіл концентрації носіїв на цих рівнях (див. рис. 4, б). Дійсно, концентрація дефектів у станах А і В до дії УЗ визначається системою рівнянь:

$$N_{A} = N_{0}e(-E_{1}/kT);$$
 (5)

$$N_B = N_0 e \left(-E_2 / kT \right); \tag{6}$$

$$N_0 = N_A + N_B \,. \tag{7}$$

А при УЗ дії:

$$N_{A}' = N_{0}e\left(-E_{1}'/kT\right);$$
 (5')

$$N_{B}' = N_{0}e\left(-E_{2}'/kT\right);$$
 (6')

$$N_0 = N_A' + N_B'. (7')$$

Тут N_0 – загальна концентрація даного типу дефектів; N_A і N_B – їх концентрації в стані A і B до дії УЗ; N_A' і N_B' – у процесі дії УЗ відповідно.

Отже, користуючись традиційними уявленнями про модифікацію в результаті домішкововакансійної взаємодії, наприклад А-центра [2, 18], отримані акустостимульовані зміни згідно з такою моделлю можна представити наступним чином. У результаті дії ультразвуку відповідна конфігураційна перебудова дефекту (див. рис. 4, а і б) супроводжується зміною переважаючої емісії електронів з рівня E_1 -конфігурації на емісію з рівня Е2. При цьому неспарений електрон заповненого дефекту під збурюючим впливом домішкового атома (вуглецю або азоту), який під дією УЗ наближається до *А*-центра чи дивакансії, з'єднується мостом з двома іншими атомами кремнію і відбувається зміна енергетичного спектра системи в цілому.

Рис. 4. Конфігураційно-координатна модель перерозподілу концентрації дефектів між різними енергетичними станами: *a* - без ультразвуку; *б* - при дії ультразвуку.

Висновки

Узагальнюючи отримані результати, можна стверджувати, що при УЗ обробці відбувається ріст рухливості μ та концентрації n носіїв струму в

- Подолян А.А., Хиврич В.И. Влияние ультразвука на отжиг радиационных дефектов в кремнии при комнатных температурах // Письма в ЖТФ. - 2005. -Т. 31, вып. 10. - С. 11 - 16.
- Olikh Ja.M., Olikh O.Ja. Active ultrasound effects and their future usage in sensor electronics // Сенсорна електроніка і мікросистемні технології. - 2004. -№ 1. - С. 19 - 29.
- Конозенко И.Д., Семенюк А.К., Хиврич В.И. Радиационные эффекты в кремнии. - К.: Наук. думка, 1974. - 200 с.
- Мукашев Б.Н., Абдуллин Х.А., Горелкинский Ю.В. Метастабильные и бистабильные дефекты в кремнии // УФН. - 2000. - Т. 170, № 2. - С. 143 - 155.
- 5. Воскобойников В.В., Синица С.П. Омические контакты к кремнию // Приборы и техника эксперимента. 1967. № 4. С. 247 248.
- 6. Зеегер К. Физика полупроводников / Пер. с англ. под ред. Ю. К. Пожелы. М.: Мир, 1977. 615 с.
- Долголенко А.П., Литовченко П.Г., Варенцов М.Д., Гайдар Г.П. Энергетическое положение в запрещенной зоне n-Si бистабильного дефекта (C_iC_s)° в

зразках, які мають глибокі центри. Це може бути пов'язано зі стимульованою УЗ дисоціацією таких центрів на більш мілкі донорні центри, а також модифікацією даних центрів атомом домішки, що приводить до росту μ і *n*, або ж стимульованою дією УЗ на негомогенно розподілені області просторового заряду *n*- і *p*-типу провідності.

Показано, що основними акустоактивними дефектами в Si-Cz зразках є модифіковані *A*-центри (E_c - 0,205 еВ) і дивакансії (E_c - 0,26 еВ). УЗ стимулює "локальну дифузію" окремих домішкових атомів з утворенням нестабільних комплексів, унаслідок чого відбувається часткове відновлення та покращення електрофізичних параметрів опроміненого *n*-Si при дії УЗ та тривала релаксація до попереднього стану при виключенні УЗ за декілька діб.

Динамічні (зворотні) зміни концентрації та рухливості в результаті дії УЗ обробки відбуваються в результаті корегованих перетворень дефектних комплексів унаслідок збурення термодинамічної рівноваги системи РД. Для пояснення зміни електричної активності РД у процесі дії УЗ наведено якісну дворівневу енергетичну конфігураційно-координатну модель перерозподілу концентрації дефектів між різними енергетичними станами.

Автори висловлюють вдячність В. І. Хівричу за допомогу в проведенні експерименту та корисне обговорення одержаних результатів.

СПИСОК ЛІТЕРАТУРИ

"В" конфигурации // Зб. наук. праць Ін-ту ядерних досл. - 2003. - № 1(9). - С. 63 - 68.

- Бабич В.М., Блецкан Н.И., Венгер Е.Ф. Кислород в монокристаллах кремния. - К.: Інтерпрес ЛТД, 1997. - 240 с.
- Бабич В.М., Баран М.П., Кириця В.Л. та ін. Розсіювання носіїв струму у відпалених кристалах кремнію, вирощених за методом Чохральського // УФЖ. - 1994. - Т. 39, № 4. - С. 481 - 485.
- 10. Неустроев Е.П., Смагулова С.А., Антонова И.В., Сафронов Л.Н. Формирование электрически активных центров в кремнии, облученном электронами, в интервале температур 400 - 700 °С // ФТП. -2004. - Т. 38, вып. 7. - С. 791 - 795.
- Brosious P.R.. Defects and Radiation Effects in Semiconductors, Nice-1978, Bristol-London, Inst. of Phys. 1979. - No. 46. - P. 248.
- 12. Баранский П.И., Громашевский В.Л., Дякин В.В. и др. Перестройка центров рассеяния носителей тока в Si под действием ультразвука // Тез. докл. XIII Всесоюз. конф. по акустоэлектронике и квант. акустике, 8 - 10 окт. 1986 г., Черновцы. - К., 1986. - Ч. 2. - С. 33 - 34.

- 13. *Tokumaru Y., Okushi H., Masui T., Abe Y.* Deep levels associated with nitrogen in silicon // Jpn. J. Appl. Phys. P. 2. 1982. No. 21. P. L443 L444.
- Asghar M., Zafar Iqbal M., Zafar N. Characterization of deep levels introduced by alpha radiation in n-type silicon // J. Appl. Phys. - 1993. - Vol. 73, No. 8. -P. 3698 - 3708.
- Moll M., Fretwurst E., Kuhnke M., Lindström G. Relation between microscopic defects and macroscopic changes in silicon detector properties after hadron irradiation // Nucl. Instr. and Meth. B. 2002. Vol. 186. P. 100 110.
- Asom M.T., Benton J.L., Sauer R., Kimerling L.C. Interstitial defect reactions in silicon // Appl. Phys. Lett. 1987. Vol. 51, No. 4. P. 256 258.
- 17. Абдуллин Х.А., Мукашев Б.Н., Тамендаров М.Ф. и др. Исследование радиационных дефектов в p-Si методом нестационарной емкостной спектроскопии глубоких уровней // ФТП. - 1990. - Т. 24, № 2. - С. 391 - 392.
- 18. Jellison G.E. Transient capacitance studies of an electron trap at $E_{\rm C}$ $E_{\rm T}$ = 0.105 eV in phosphorus-doped silicon // J. Appl. Phys. 1982. Vol. 53, No. 8. P. 5715 5719.
- 19. Мурин Л.И., Маркевич В.П., Медведева И.Ф., Dobaczewski L. Бистабильность и электрическая активность комплекса вакансия-два атома кислорода в кремнии // ФТП. - 2006. - Т. 40, № 11. -С. 1316 - 1320.

ВЛИЯНИЕ УЛЬТРАЗВУКА НА ЭЛЕКТРИЧЕСКУЮ АКТИВНОСТЬ РАДИАЦИОННЫХ ДЕФЕКТОВ В *ү*-ОБЛУЧЕННЫХ КРИСТАЛЛАХ КРЕМНИЯ *п*-ТИПА

В. М. Бабич, А. П. Долголенко, Я. М. Олих, Н. Д. Тимочко

Исследовано влияние ультразвуковой (УЗ) обработки ($f = 5 \div 15 \text{ МГц}, W \le 2 \text{ Вт/см}^2, t \approx 10^4 \text{ с}$) на перестройку радиационных дефектов (РД) в кристаллах *n*-Si с высокой концентрацией кислорода (9,5 · 10¹⁷ см⁻³), облученных γ -квантами ⁶⁰Со дозами 10⁸ и 10⁹ рад. Выявлены изменения температурных (100 - 300 K) зависимостей концентрации n(T) и подвижности носителей заряда $\mu(T)$ после проведенных γ -облучений (необратимые изменения) и УЗ обработок (обратные). Из теоретических рассчетов n(T) определены энергетические положения дефектных уровней E_a^i и их концентрации N_a^i . Обсуждается возможность акустостимулированной перестройки обнаруженных РД (дивакансии V_2^- , $E_a^{-1} = (E_c - 0,424$ эВ), модифицированного *A*-центра (*V*-O), $E_a^{-2} = (E_c - 0,205$ эВ) и комплекса, что может содержать азот (? + N), $E_a^{-3} = (E_c - 0,19$ зВ)) путем изменение конфигурации, структуры и заряжености на примере двухуровневой энергетической конфигурационно-координатной модели.

ULTRASOUND INFLUENCE ON THE ELECTRICAL ACTIVITY OF RADIATION DEFECTS IN γ -IRRADIATED *n*-TYPE SILICON CRYSTALS

V. M. Babych, A. P. Dolgolenko, Ja. M. Olikh, M. D. Tymochko

The effect of the ultrasonic (US) processing in regime ($f_{\rm US} = 8 \text{ M}\Gamma \text{u}$, $W_{\rm US} = 2 \text{ Br/cm}^2$, $t \approx 10^4 \text{ c}$) on the transformation of radiation defects (RDs) in γ -irradiated ($D = 10^8$ and 10^9 rad) in Chochralski-grown *n*-type silicon single crystals (9,5 $\cdot 10^{17} \text{ cm}^{-3}$) has been studied. The changes of the temperature dependence (100–300 K) of concentration n(T) and mobility $\mu(T)$ of charge carriers after γ -irradiated (irreversible changes) and US processing (reverse) has been exposed. Energy positions of the defect levels E_a^{i} and their concentrations N_a^{i} from the theoretical computations were determined. Possibility of acoustostimulated transformation of definite RDs (divacancies V_2^- , $E_a^{-1} = (E_c - 0.424 \text{ eB})$, modified *A*-center (V- O), $E_a^{-2} = (E_c - 0.205 \text{ eB})$ and complex that can contain nitrogen (? + N), $E_a^{-3} = (E_c - 0.19 \text{ eB})$) by means of change of configuration, structure and recharge for example two-dimensional energy configuration-coordinate model is considered.

Надійшла до редакції 27.09.06, після доопрацювання – 15.02.07.