УДК 539.172.17

КУТОВІ КОРЕЛЯЦІЇ ТА СПІВВІДНОШЕННЯ ГІЛОК РОЗПАДУ ЗБУДЖЕНОГО СТАНУ ЯДРА ⁷Li*(7,45 MeB) В РЕАКЦІї ⁷Li(α, α)⁷Li*

<u>О. Ф. Німець¹</u>, Ю. М. Павленко¹, В. Л. Шаблов², Ф. І. Карманов², В. О. Кива¹, В. М. Добріков¹, О. К. Горпинич¹, І. М. Коломієць¹, Б. А. Руденко¹, Ю. Я. Карлишев¹, А. П. Войтер¹, І. О. Мазний¹, С. Є. Омельчук¹, Ю. С. Рознюк¹

> ¹ Інститут ядерних досліджень НАН України, Київ ² Інститут атомної енергетики, Обнінськ

При енергії $E_{\alpha} = 27,2$ MeB проведено вимірювання диференціальних перерізів непружного розсіяння α -частинок ядрами ⁷Li та тричастинкових реакцій ⁷Li(α , α^{6} Li)n, ⁷Li(α , $\alpha\alpha$)t. З відношення перерізів, які вимірювалися в кінематично повних та неповних експериментах, визначено ймовірність розпаду ядра ⁷Li*(7,45 MeB) у канал ⁶Li + n (P = 0,49 ± 0,06). Це значення суттєво відрізняється від даних, які отримано при дослідженні розпаду ⁷Li*(7,45 MeB) у бінарних реакціях, що може бути пояснено впливом кулонівського поля супутньої α частинки на розпад біляпорогових резонансів у тричастинкових реакціях.

Вступ

Згідно з оглядами [1, 2], утворення і розпад збудженого стану ядра ⁷Li*(7,45 MeB) детально досліджено в бінарних реакціях 3 H(α , n)⁶Li, 3 H(α , α)³H та

$$n + {}^{6}Li \rightarrow {}^{7}Li^{*} \rightarrow n + {}^{6}Li,$$
 (1a)

$$\downarrow \alpha + t.$$
 (16)

В енергетичних залежностях повних перерізів взаємодії нейтронів з ядрами ⁶Li та перерізів реакцій (1а), (1б) [3, 4] при енергії нейтронів 245 кеВ спостерігався інтенсивний пік, що відповідає резонансу 7 Li*(7,45 MeB). Значення приведених ширин цього резонансу для каналів $n + {}^{6}Li$ та $\alpha + t$ суттєво відрізняються – $\gamma_n^2/\gamma_\alpha^2 = 50$ [5]. Значно меншим є відношення парціальних ширин $\Gamma_n(E_r)/\Gamma_\alpha(E_r) = 3,28$ [6] при резонансній енергії нейтронів $E_n = E_r = 245$ кеВ, що зумовлено суттєвою різницею проникливостей бар'єрів P_n та P_a $(\Gamma_n = 2P_n \gamma_n^2, \Gamma_\alpha = 2P_\alpha \gamma_\alpha^2)$ при розпаді стану ⁷Li*(7,45 MeB) по вказаних каналах. В області резонансу P_n << P_a, оскільки його енергія збудження перевищує поріг розпаду в нейтронний канал всього на 0,2 МеВ, а поріг розпаду на αчастинку і тритон – на 4,98 МеВ [1, 2].

Повний переріз взаємодії п + ⁶Li при резонансній енергії нейтронів досягає величини $\sigma_{tot}(E_r) = 11,2$ б [3], а значення перерізів реакцій (1а), (1б) становлять $\sigma_n(E_r) = 8,0$ б [3] та $\sigma_a(E_r) = 3,2$ б [4] відповідно. Відношення перерізів $\sigma_n(E_r)/\sigma_{tot}(E_r) = 0,71$, $\sigma_a(E_r)/\sigma_{tot}(E_r) = 0,29$ характеризує розподіл гілок розпаду по каналах n + ⁶Li та α + t у реакціях (1). Близькі значення мають і відношення парціальних ширин – $\Gamma_n(E_r)/\Gamma(E_r) = 0,77, \Gamma_\alpha(E_r)/\Gamma(E_r) = 0,23$ [5].

Збуджений стан ⁷Li*(7,45 MeB) спостерігався також у багатьох реакціях, в яких він утворю-

ється у вихідному каналі як стан ядра віддачі, зокрема в непружному розсіянні різного типу частинок (від електронів до важких іонів) та реакціях передач нуклонів і кластерів [2]. Непружне розсіяння α-частинок ядрами ⁷Li досліджувалося при енергіях до 29,4 МеВ [7] та при 35,3 МеВ [8]. У кінематично повних експериментах розпад ⁷Li*(7,45 MeB) у канал α + t спостерігався при дослідженні реакцій ⁷Li(α , $\alpha\alpha$)t при E_{α} = 27,2 MeB [9], 29,4 МеВ [10] та 50 МеВ [11], реакції ⁹Be(d, $\alpha\alpha$)t при E_d = 13,6 MeB [12] та 26,3 MeB [13], а в канал n + ⁶Li лише в реакцii ⁶Li(d, p⁶Li)n при E_d = 10 MeB [14]. Експериментальні дані щодо розподілу гілок розпаду 7 Li*(7,45 MeB) по каналах $n + {}^{6}Li$ та $\alpha + t$ у тричастинкових реакціях на цей час поки що не отримано.

У даній роботі з метою визначення ймовірностей розпаду збудженого стану ⁷Li*(7,45 MeB) у кінематично повних та неповних експериментах при енергії α-частинок 27,2 MeB досліджуються тричастинкові канали реакцій

$$\alpha + {^{7}\text{Li}} \rightarrow \alpha + {^{7}\text{Li}} * \rightarrow \alpha + {^{6}\text{Li}} + n, \qquad (2a)$$

$$\downarrow \alpha + \alpha + t.$$
 (26)

Обговорюються також можливості вимірювання співвідношення гілок розпаду цього стану в реакціях ${}^{6}\text{Li}(d,p){}^{7}\text{Li}^{*}, {}^{7}\text{Li}(d,d){}^{7}\text{Li}^{*}, {}^{9}\text{Be}(d,\alpha){}^{7}\text{Li}^{*}.$

Умови проведення експериментів

Для вибору оптимальних умов вимірювання ймовірностей розпаду збудженого стану ⁷Li*(7,46 MeB) на пучках дейтронів з енергією 13,6 MeB та α -частинок 27,2 MeB (циклотрон У-120 ІЯД НАН України) вимірювалися диференціальні перерізи реакцій ⁶Li(d, p)⁷Li*, ⁷Li(d, d)⁷Li*, ⁹Be(d, α)⁷Li* та ⁷Li(α , α)⁷Li*. Мішені ^{6,7}Li товщиною 200 - 300 мкг/см² було виготовлено напилюванням LiF з природним вмістом ⁷Li (92,6%) та ізотопнозбагаченим (до 95 %) вмістом ⁶Li на нікелеву плівку товщиною ~ 80 мкг/см². Товщина са-⁹Be мопідтримуючої мішені становила 300 мкг/см². Заряджені продукти реакцій реєструвались телескопами кремнієвих ДЕ-Е детекторів товщиною 30 - 50 мкм та 500 - 1000 мкм відповідно. Товщини ΔЕ-детекторів вибрано таким чином, щоб максимально зменшити нижній поріг реєстрації продуктів реакцій при збереженні їх розділення за масою. Тілесні кути реєстрації телескопів летекторів становили $\Omega = 0.76 \cdot 10^{-3} - 2.72 \cdot 10^{-3}$ ср. Телескопи детекторів з великим тілесним кутом використовувалися для реєстрації продуктів розпаду ⁷Li*(7,45 MeB) та інших резонансів. Сумарна енергетична роздільна здатність реєстрації продуктів реакцій визначалась в основному розкидом енергії пучка прискорювача та втратами енергії частинок у мішені й становила ~ 1 % від значення енергії прискорених частинок, а для реакцій ⁹Be(d, α) τα ⁷Li(α, α) – ~1,5 - 2 %. Для цих реакцій додатковий вагомий внесок в енергетичну роздільну здатність зумовлено геометрією вимірювань, а саме апертурою телескопів та розміром пучка на мішені.

Накопичення, зберігання та аналіз багатопараметричних подій, що реєструвалися, здійснювалися за допомогою комп'ютеризованої методики, яку детально викладено в [15]. Методика забезпечувала багатовимірний аналіз подій збігів від різних пар телескопів детекторів $E_i \times \Delta E_i \times E_j \times \Delta E_j \times t_{ij} \times N_D$, де i, j – номери ввімкнених у схему збігів телескопів, Еі, Еј – енергії продуктів реакції, що реєструються цими телескопами; ΔE_i , ΔE_i – втрати енергії частинок у ΔE_i детекторах; N_D – код-ідентифікатор пари телескопів детекторів; t_{ii} – часовий спектр збігів (спектр амплітуд на виході конвертора "час амплітуда").

На рис. 1 показано типові Δ E-E-спектри продуктів реакцій d + ⁹Be та α + ⁷LiF. Верхня межа вимірювання енергії протонів (9 MeB) визначалась сумарною товщиною Δ E- та E-детекторів. Відсутність у спектрах помітного внеску реакцій (d, ³He), (α , ³He) зумовлено високим порогом цих ендоенергетичних реакцій.

Енергетичні спектри продуктів реакцій у вигляді одновимірних гістограм отримувалися за допомогою відбору накопичених подій з обмежувальними масками, які відповідають в ($E-\Delta E$)спектрах реєстрації того чи іншого типу частинок (наприклад, α-частинок на рис. 1, δ). Інклюзивні спектри α-частинок, які отримано в результаті вказаного відбору подій та сумування амплітуд сигналів з ΔE - та E-детекторів, наведено на рис. 2. У спектрах чітко видно піки, що відповідають внескам реакцій (d, α) та (α , α) на ядрах ⁹Be, ⁷Li та ядрах домішок мішеней. Континуум, що спостерігається при низьких енергіях, зумовлено реєстрацією α -частинок як продуктів розпаду ряду незв'язаних станів ядер, які збуджуються при непружному розсіянні та в інших супутніх каналах реакцій [16, 17].

Рис. 1. ΔE -Е-спектр продуктів реакцій: d + ⁹Be, E_d = 13,6 MeB, $\Theta = 31^{\circ}(a)$; $\alpha + {}^{7}LiF$, E_a = 27,2 MeB, $\Theta = 34^{\circ}$ (б). Суцільна лінія – контур обмежувальної маски для відбору подій, що відповідають реєстрації α -частинок.

При дослідженні тричастинкових реакцій ${}^{6}Li(d, p{}^{6}Li)n$ та ${}^{7}Li(\alpha, \alpha{}^{6}Li)n$ у кореляційних експериментах реєстрація протонів та α -частинок здійснювалась за ΔE -Е-методикою. Для реєстрації та ідентифікації ядер ⁶Li застосовано метод часу прольоту та антизбігу подій, що реєструвались в ΔE - та E-детекторах. Поєднання цих методів дозволило надійно ідентифікувати вказані тричастинкові канали реакцій.

Рис. 2. Енергетичний спектр α -частинок з реакції ⁹Be(d, α), E_d= 13,6 MeB, Θ = 31°. Стрілками показано енергії α -частинок, що відповідають внескам утворення у вихідному каналі реакції ⁹Be(d, α)⁷Li основного та збуджених (0,48; 4,63; 6,68; 7,45 MeB) станів ядра ⁷Li та внескам реакцій на ядрах домішок мішені ($1 - {}^{12}C(d, \alpha){}^{10}B, 2 - {}^{16}O(d, \alpha){}^{14}N,$ $3 - {}^{16}O(d, \alpha){}^{14}N*(3,95 MeB), 4 - {}^{16}O(d, \alpha){}^{14}N*(5,1 MeB))$ (*a*). Енергетичний спектр α -частинок з реакції ⁷LiF(α , α), E_{α} = 27,2 MeB, Θ = 34°. Стрілками показано енергії α -частинок, які відповідають внескам пружного та непружного розсіяння цих частинок ядрами ⁶Li, ⁷Li, ${}^{12}C$, ${}^{19}F$ та Ni. Цифрами показано енергії збудження ядра ⁷Li (δ).

На основі визначених перерізів реакцій ${}^{6}Li(d, p){}^{7}Li^{*}$, ${}^{7}Li(d, d){}^{7}Li^{*}$, ${}^{9}Be(d, \alpha){}^{7}Li^{*}$, ${}^{7}Li(\alpha, \alpha){}^{7}Li^{*}$ та результатів моделювання умов проведення кореляційних експериментів для вимірювання ймовірності розпаду збудженого стану ${}^{7}Li^{*}(7,45 \text{ MeB})$ було вибрано процес непружного розсіяння ${}^{7}Li(\alpha, \alpha){}^{7}Li^{*}$. Для вимірювань застосовано запропонований у [18] метод, який

грунтується на комплексних дослідженнях тричастинкових реакцій у кінематично повних та неповних експериментах.

Визначення ймовірності збудження резонансу ⁷Li*(7,45 MeB)

Імовірність збудження стану ядра ⁷Li*(7,45 MeB) у реакціях (2) можна визначити з інклюзивних спектрів непружно розсіяних α -частинок добре відомим методом, а саме інтегруванням спектрів за енергією в області внеску цього стану ⁷Li*. Диференціальний переріз

$$\frac{d\sigma_{exc}}{d\Omega_{\alpha}} = \int \frac{d^2\sigma}{d\Omega_{\alpha}dE_{\alpha}} dE_{\alpha}, \qquad (3)$$

визначений зі спектра α -частинок, що реєструвались під кутом $\Theta_{\alpha} = 34^{\circ}$ ($\phi_{\alpha} = 180^{\circ}$), характеризує ймовірність збудження резонансу ⁷Li*(7,45 MeB), центр інерції якого згідно з кінематикою реакцій (2) повинен рухатись під кутом $\Theta_{7Li*} = 46,5^{\circ}$ ($\phi_{7Li*} = 0^{\circ}$) (рис. 3).

На рис. 4 показано фрагмент інклюзивного спектра α -частинок ($\Theta_{\alpha} = 34^{\circ}$) в області збудження станів ядра ⁷Li*(4,63; 6,68; 7,45 MeB). Аналіз спектра здійснювався з урахуванням процесів збудження вказаних станів ядер віддачі ⁷Li* та "фонових" процесів α-розпаду вказаних та інших станів ⁷Li*, а також ⁸Be* в реакції α + ⁷Li \rightarrow t + $+ {}^{8}Be^* \rightarrow t + \alpha + \alpha$. Детальніше процедуру аналізу інклюзивних спектрів продуктів тричастинкових реакцій викладено [16, 17]. В Внеску 'Li*(7,45 MeB) в спектрі α-частинок відповідає крива 3.

У наведеному на рис. 4 спектрі α-частинок та інших інклюзивних спектрах, що вимірювалися в діапазоні кутів $\Theta_a = 25 - 45^\circ$, положення резонансів ⁷Li*(7,45 MeB) i ⁷Li*(4,63 MeB) у межах похибок їх визначення ($\Delta E^* = 0.03$ MeB) відповідають значенням, наведеним у компіляційних роботах [1, 2, 6]. Для третього збудженого стану ядра 'Li отримано значення $E^* = (6,53 \pm 0,03)$ MeB. Зсув положення цього резонансу відносно даних [1, 2, 5, 6] становить $\Delta E^* = -(0,150 \pm 0,03)$ MeB. Розрахунки [19] у рамках модифікованої теорії взаємодії в кінцевому стані [20 - 22] показують, що в реакції 'Li(α , α)'Li* при $E_{\alpha} = 27,2$ MeB таку зміну резонансної енергії можна очікувати при врахуванні впливу кулонівського поля супутньої α-частинки на розпад короткоживучого резонансу $^{7}Li^{*}(E^{*} = 6,68 \text{ MeB}, \Gamma \sim$ ⁷Li*(7,45 MeB) i 0,9 MeB). Для резонансів ⁷Li*(4,63 MeB), час життя яких на порядок більший, відповідний зсув становить $\Delta E^* \sim 0.02 \text{ MeB}$, тобто в межах похибок даного експерименту.

Рис. 3. Векторна діаграма швидкостей для реакції р + T \rightarrow k + R \rightarrow k + i + j. Θ_k , Θ_i , Θ_R , V_k, V_i, V_R – кути емісії та швидкості в л.с.к. частинок k, і та центра інерції резонансу R відповідно. D_k, D_{i(j)} – детектори, що реєструють частинки k та i. Радіус кола відповідає можливим значенням V_i^R (швидкості частинок і в системі центра мас ядра R).

Рис. 4. Фрагмент енергетичного спектра α -частинок із реакції $\alpha + {}^{7}\text{Li} \rightarrow \alpha + {}^{7}\text{Li}^{*}$ ($E_{\alpha} = 27,2$ MeB, $\Theta_{\alpha} = 34^{\circ}$). l - 3 - внески збудження ядер віддачі ${}^{7}\text{Li}^{*}$ з енергіями збудження 4,63; 6,68; 7,45 МеВ відповідно; 4 - внесок збудження ядра ${}^{6}\text{Li}^{*}(2,18 \text{ MeB})$. Криві 5 - 9 - внески процесів α -розпаду станів ${}^{8}\text{Be}^{*} \rightarrow \alpha + \alpha$, ${}^{7}\text{Li}^{*} \rightarrow \alpha + t$ у реакціях $\alpha + {}^{7}\text{Li} \rightarrow t + {}^{8}\text{Be}^{*}$ та $\alpha + {}^{7}\text{Li} \rightarrow \alpha + {}^{7}\text{Li}^{*}$: 5 - ${}^{8}\text{Be}^{*}(3,0 \text{ MeB})$; 6 - ${}^{7}\text{Li}^{*}(4,63 \text{ MeB})$; 7 (штрихова) - ${}^{7}\text{Li}^{*}(6,68 \text{ MeB})$; 8 - ${}^{7}\text{Li}^{*}(7,45 \text{ MeB})$; 9 - ${}^{7}\text{Li}^{*}(9,67 \text{ MeB})$.

Визначення ймовірності розпаду збудження резонансу ⁷Li*(7,45 MeB) у кореляційних експериментах

При розпаді ядра R з енергією збудження E* в реакції p + T \rightarrow k + R \rightarrow k + i + j в канал i + j кути емісії продуктів розпаду Θ_i , ϕ_i , Θ_j , ϕ_j та їх швидкості V_i, V_j в лабораторній системі координат

(л.с.к.) визначаються векторами V_R та V_i^R , V_j^R (див. рис. 3). Значення V_i^R залежить від енергетичного балансу розпаду $R \rightarrow i + j$: $Q = E_{i-j} =$ $= E^* - E_{nop}$, де E_{nop} – енергія зв'язку частинок і, ј в ядрі R, E_{i-j} – енергія відносного руху частинок і та j. Діапазон можливих кутів емісії $\Delta \Theta_i = \Theta_i^{max}$ - Θ_i^{min} , $\Delta \phi_i = \phi_i^{max}$ - ϕ_i^{min} визначається співвідношенням V_i^R/V_R . За умови $V_i^R < V_R$

$$\Delta \Theta_{i} = \Delta \varphi_{i} \approx 2 \operatorname{arctg}(V_{i}^{R}/V_{R}).$$
(4)

При фіксованому куті Θ_k = const частинка і як продукт розпаду незв'язаного стану R з енергією збудження Е* може спостерігатись у межах "конусу", що визначається діапазоном можливих кутів емісії $\Delta \Theta_i$, $\Delta \phi_i$. У випадку розпаду ⁷Li*(7,45 MeB) у канал ⁶Li + n ($Q_{6Li+n} = 4,98$ MeB) у реакції (2а) при $E_{\alpha} = 27,2$ MeB та $\Theta_{\alpha} = 34^{\circ}$ діа-⁶Li становить пазон кутів емісії ядер $\Delta \Theta_{6Li} \approx \Delta \varphi_{6Li} \approx 12^{\circ}$ у л.с.к. При розпаді ⁷Li*(7,45 MeB) в канал а + t (реакція (2б)) діапазон $\Delta \Theta_{\alpha(t)}$, $\Delta \phi_{\alpha(t)}$ значно більший, що зумовлено достатньо великим значенням енергетичного балансу цього каналу розпаду ($Q_{\alpha+t} = 4,98$ MeB). Тому основна увага в даному експерименті приділялась дослідженню реакції (2а), для якої набагато легше забезпечити вимірювання для всього діапазону кутів розпаду резонансу ⁷Li*(7,45 MeB).

Інформацію про ймовірність збудження та розпаду ядра ⁷Li* в канал ⁶Li + n у реакції (2а) містять диференціальні перерізи

$$\frac{d^4\sigma}{d\Omega_{\alpha}dE_{\alpha}d\Omega_{6Li}dE_{6Li}},$$
(5)

які можна отримати в кінематично повних експериментах з енергетичних спектрів часових збігів α -частинок та ядер ⁶Li. Теоретична інтерпретація перерізів (5) є досить складною, тому для подальшого аналізу використовують перерізи

$$\frac{d^3\sigma}{d\Omega_{\alpha}d\Omega_{6Li}dE_{\alpha}},\tag{6}$$

$$\frac{d^{3}\sigma}{d\Omega_{a}d\Omega_{6Li}dE_{6Li}},$$
(7)

які є результатом інтегрування перерізів (5) за енергією E_{6Li} або E_{α} в області дозволених законами збереження енергії та імпульсу значень [23].

Діаграма на рис. З відповідає ідеальним умовам вимірювань імовірностей розпаду станів з Г = 0. Зміна енергії збудження в межах $\Delta E^* \sim$ $\sim (2 - 3)\Gamma$ зумовлює певну зміну енергії (ΔE_k) частинок k, що реєструються під кутом Θ_k , енергії (ΔE_R) і кута вильоту $(\Delta \Theta_R)$ у л.с.к. центра інерції ядра R, а також енергії відносного руху продуктів розпаду на величину $\Delta E_{ij} = \Delta E_{mn} = \Delta E^*$. Перелічені фактори (ΔE_R , $\Delta \Theta_R$ та ΔE_{ii}) призводять до зміни максимальних і мінімальних кутів спостереження продуктів розпаду ядра R, тобто до розширення діапазону $\Delta \Theta_{i(i)}$, $\Delta \phi_{i(i)}$. Додаткове розширення цього діапазону та деформація енергетичних залежностей диференціальних перерізів (5) – (7) зумовлюються також рядом умов проведення реальних експериментів, а саме: розкидом енергії та просторовим розподілом пучка бомбардуючих ядер; товщиною мішені; апертурою детектора, за допомогою якого реєструються частинки k, та енергетичною роздільною здатністю детекторів.

Чи не найкращим способом урахування всіх перелічених факторів є моделювання процесів утворення і розпаду незв'язаних станів ядер за методом Монте-Карло [18, 24]. На рис. 5 наведено результати розрахунків за вказаним методом диференціальних перерізів (5) і (6), що відповідають процесам збудження та розпаду ядра ⁷Li*(7,45 MeB) у канал ⁶Li + n у реакції (2а). На рис. 6 показано змодельований для площини детектора просторовий розподіл подій реєстрації ядер ⁶Li з розпаду цього стану ⁷Li*.

Рис. 5. Розраховані за методом Монте-Карло спектри α - ⁶Li збігів, що відповідають розпаду ⁷Li*(7,45 MeB) у реакції (2a). *а* – диференціальний переріз (5), *б* – переріз (6). Е₁, Е₂ – енергії α -частинок та ядер ⁶Li, що "реєструвалися" під кутами $\Theta_1 = 34^\circ$, $\varphi_1 = 180^\circ$ і $\Theta_2 = 44,5^\circ$, $\varphi_2 = 0^\circ$ відповідно.

Перерізи (5) вимірювались при фіксованому куті реєстрації α -частинок ($\Theta_{\alpha} = 34^{\circ}$, $\varphi_{\alpha} = 180^{\circ}$) та різних кутах реєстрації ядер ⁶Li навколо заданого кутом $\Theta_{7Li^*} = 46,5^{\circ}$, $\varphi_{7Li^*} = 0^{\circ}$ напрямку руху центра інерції ядра ⁷Li*(7,45 MeB). У межах $\Delta \Theta_{6Li} = 12^{\circ}$ кутові кореляції вимірювалися для трьох значень кутів $\varphi_{6Li} = -6^{\circ}$; 0° ; 3,3°. Приклади спектра α -⁶Li збігів та його проекції на вісь енергій α -частинок (перерізи (5) та (6) відповідно) наведено на рис. 7.

Найбільш інтенсивний пік у спектрі на рис. 7 відповідає внеску процесу збудження та розпаду ⁷Li*(7,45 MeB) у канал ⁶Li + n. Інтегруванням перерізів (6) за енергією E_{α} в межах внеску вказаного процесу отримувались диференціальні перерізи

$$\frac{d^2\sigma}{d\Omega_{\alpha}d\Omega_{6Li}} = \int \frac{d^3\sigma}{d\Omega_{\alpha}d\Omega_{6Li}dE_{\alpha}} dE_{\alpha}, \quad (8)$$

залежності яких від кута Θ_{6Li} , отримані для трьох значень кутів φ_{6Li} , показано на рис. 8. Гістограми на цьому рисунку відповідають розрахункам ефективності реєстрації [18, 24] ядер ⁶Li з розпаду ⁷Li*—⁶Li + n за методом Монте-Карло:

$$\varepsilon = \frac{N_{6Li}}{N_{7Li^*}},\tag{9}$$

де N_{7Li^*} – змодельована кількість збуджених ядер віддачі ⁷Li*(7,45 MeB), що відповідає кількості α-частинок, які "реєструються" під кутом $\Theta_{\alpha} = 34^{\circ}$ ($\phi_{\alpha} = 0^{\circ}$) у кінематично неповному "експерименті"; N_{6Li} – кількість "зареєстрованих" збігів α-частинок ($\Theta_{\alpha} = 34^{\circ}$, $\phi_{\alpha} = 0^{\circ}$) з ядрами ⁶Li ($\phi_{6Li} = -6^{\circ}$; 0° ; 3,3°) з розпаду ⁷Li*(7,45 MeB) \rightarrow ⁶Li + n. Сумарна ефективність реєстрації для кожного зі значень кута ϕ_{6Li} становить близько 50 %.

Рис. 6. Просторовий розподіл подій α - ⁶Li збігів ($\Theta_{\alpha} = 34^{\circ}$, $\phi_{\alpha} = 180^{\circ}$), що відповідає розпаду ⁷Li*(7,45 MeB). Розподіл змодельовано для площини реєстрації ядер ⁶Li. Біле коло відповідає апертурі телескопа, за допомогою якого реєструвались ядра ⁶Li, центр кола – кутам $\Theta_{6Li} = 46.5^{\circ}$, $\phi_{6Li} = 0^{\circ}$.

З урахуванням ефективності реєстрації у припущенні ізотропності розпаду можна визначити диференціальний переріз, що відповідає розпаду в усьому діапазоні можливих кутів Ω_{6Li}:

$$\frac{d\sigma_{dec}}{d\Omega_{\alpha}} = \frac{1}{\varepsilon} \frac{d^2\sigma}{d\Omega_{\alpha} d\Omega_{6Li}}.$$
 (10)

 $d^{3}\sigma/d\Omega_{a}d\Omega_{6Li}dE_{a}$, відн. од.

Рис. 7. Спектр збігів α -частинок, що реєструвались під кутом $\Theta_1 = 34^\circ$, з ядрами ⁶Li та ⁴He ($\Theta_2 = 44,5^\circ$) в області енергій, які відповідають збудженню та розпаду незв'язаних станів ⁷Li^{*}(4,63 MeB) та ⁷Li^{*}(7,45 MeB) (*a*). Лініями показано кінематичні криві для каналів реакцій ⁷Li($\alpha, \alpha \alpha$)t (справа) та ⁷Li(α, α^6 Li)n (зліва). Проекція спектра $\alpha - {}^6$ Li збігів із реакції $\alpha + {}^7$ Li $\rightarrow \alpha + {}^6$ Li + n на вісь енергій α -частинок ($\Theta_{\alpha} = 34^\circ, \Theta_{6Li} = 44,5^\circ, \varphi_{\alpha} - \varphi_{6Li} = 180^\circ$) (*б*).

Відношення перерізу (10) до перерізу (3), визначеного з інклюзивних спектрів α-частинок, характеризує ймовірність розпаду ядра ⁷Li*(7,45 MeB) у канал ⁶Li + n:

$$P(^{6}Li + n) = \frac{d\sigma_{dec}}{d\Omega_{\alpha}} / \frac{d\sigma_{exc}}{d\Omega_{\alpha}} =$$
$$= \frac{N_{6Li}}{\varepsilon N_{7Li^{*}}} = 0,49 \pm 0,06, \qquad (11)$$

де N_{7Li^*} , N_{6Li} – ті самі кількості подій, що й у виразі (9), але визначені в реальних експериментах.

Отримане значення ймовірності розпаду в канал ⁶Li + n суттєво відрізняється від даних, отриманих для бінарних реакцій (1) ($\sigma_n(E_r)/\sigma_{tot}(E_r) = 0,71$ [3 - 5]). На відміну від реакцій (1) у тричастинковій реакції (2) формування й розпад біляпорогового ядерного стану

⁷Li^{*}(7,45 MeB) відбуваються в присутності супутньої α -частинки, вплив кулонівського поля якої може бути однією з причин зміни розподілу гілок розпаду цього резонансу порівняно з бінарними реакціями [25, 26]. Такий висновок узгоджується з результатами розрахунків [22], виконаних у рамках модифікованої теорії взаємодії в кінцевому стані [20, 21].

Рис. 8. Кутові залежності перерізів (8), що вимірювалися для різних кутів φ_{6Li} : $a - \varphi_{6Li} = -6^\circ$; $\delta - \varphi_{6Li} = 0^\circ$; $c - \varphi_{6Li} = 3,3^\circ$. Гістограми – розрахунки ефективності реєстрації (9) ядер ⁶Li з розпаду ⁷Li* \rightarrow ⁶Li + n за методом Монте-Карло.

Висновки

У кінематично повних та неповних експериментах визначено ймовірність розпаду в канал ⁶Li+n незв'язаного біляпорогового стану ⁷Li*(7,45 MeB), що збуджується в тричастинковій реакції α + ⁷Li $\rightarrow \alpha$ + + ⁷Li*→α + ⁶Li + п при E_α=27,2 MeB. Отримане значення ймовірності розпаду P(⁶Li + n) = 0,49 ± 0,06 суттєво відрізняється від даних, отриманих у бінарних процесах ³H(α, n)⁶Li, ³H(α, α)³H, ⁶Li(n, n)⁶Li та ⁶Li(n, α)³H, де резонанс ⁷Li*(7,45 MeB) збуджується й розпадається як ізольована система.

Виявлена відмінність може бути пояснена в рамках теорії багаточастинкових реакцій [20, 21] як тричастинковий ефект при розпаді біляпорогового резонансу. Врахування впливу кулонівського поля супутніх частинок на розпад неізольованих резонансів у тричастинкових реакціях дозволяє успішно описати зсув положення короткоживучих резонансів та розширення резонансної лінії порівняно з даними для бінарних реакцій. Цей ефект спостерігався для віддалених від порогу розпаду резонансів, зокрема для ⁸Be*(19,9 MeB) у реакції ¹⁰B(d, $\alpha\alpha$) α [22, 27]. Модифікована теорія взаємодії в кінцевому стані [21] передбачає також можливість зменшення ширини резонансів, що може спостерігатися у випадку біляпорогових резонансів, наприклад ⁵Li*(16,7 MeB) y peakųii ⁶Li(³He, α)⁵Li* [28, 29].

Згідно з розрахунками [25], виконаними в рамках указаної теорії, відношення ймовірностей розпаду ⁷Li*(7,45 MeB) у канал ⁶Li + n та α + t у реакції ⁷Li(α , α)⁷Li* залежить від кута розпаду й може зменшуватися на 20 % порівняно з даними для бінарних реакцій ⁶Li(n, n)⁶Li та ⁶Li(n, α)³H. Теоретичні розрахунки [25] узгоджуються з експериментальними даними, отриманими в даній роботі.

Автори планують дослідити особливості розпаду інших біляпорогових резонансів легких ядер, зокрема ⁴He*(21,1 MeB) \rightarrow ³He + n, ⁵He*(16,75 MeB) \rightarrow t + d ("термоядерний резонанс"), ⁷Li*(9,9 MeB) \rightarrow ⁶He + р та інших і сподіваються, що отримані результати сприятимуть подальшому розвитку теорії багаточастинкових ядерних реакцій.

СПИСОК ЛІТЕРАТУРИ

- Ajzenberg-Selove F. Energy levels of light nuclei A = 5 - 10 // Nucl. Phys. A. - 1988. - Vol. 490, No. 1. - P. 1 - 225.
- Tilley D. R., Cheves C. M., Godwin J. L. et al. Energy levels of light nuclei A = 5,6,7 // Nucl. Phys. A. - 2002. - Vol. 708, No. 1. - P. 3 - 163.
- Smith A. B., Guenther P. T., Whalen J. F. Neutron total and scattering cross sections of ⁶Li in the low-MeV range // Nucl. Phys. A. - 1982. - Vol. 373, No. 2. - P. 305 - 325.
- Lamaze G. P., Shrack R. A., Wasson O. A. A new measurement of the ⁶Li(n,α)T cross section // Nucl. Sci. Eng. 1978. Vol. 68, No. 2. P. 183 188.
- Spiger R. J., Tombrello T. A. Scattering of ³He by ⁴He anf of ⁴He by tritium // Phys. Rev. -1967. - Vol. 163, No. 4. - P. 964 - 984.
- Ajzenberg-Selove F. Energy levels of light nuclei A = 5 - 10 // Nucl. Phys. A. - 1979. - Vol. 320, No. 1. -P. 1 - 224.
- Matsuki S., Yamashita S., Fukunaga K. et al. Elastic and inelastic scattering of 14.7 MeV deuterons and of 29.4 MeV α-particles by ⁶Li and ⁷Li // Journ. Phys. Soc. Japan. – 1969. - Vol. 26. - P. 1344 -1353.
- Dickey S. A., Kraushaar J. J., Peterson R. J. Isoscalar Excitations of ⁷Li* // Z. Phys. A. - 1985. -Vol. 320. - P. 649 - 654.
- Козырь Ю. Е., Медведсв В. И., Павленко Ю. Н., Пугач В. М. Изучение механизма реакций ⁷Li(α, 2α)t и ⁶Li(α, 2α)d при E = 27.2 МэВ // Изв. АН СССР. Сер.физ. - 1985. - Т.49, No. 5. - С. 1026 - 1031.
- Matsuki S. Disintegrations ⁷Li and ⁶Li by 29.4 MeV α-particles // Journ. Phys. Soc. Japan. - 1968. -Vol. 24. - P. 1203 - 1223.
- 11. Lambert J. M., Treado P. A., Beach L. A. et al. Sequential decay in the ${}^{7}\text{Li}(\alpha, t){}^{8}\text{Be}(\alpha){}^{4}\text{He}$ and ${}^{7}\text{Li}(\alpha, \alpha'){}^{7}\text{Li}(t){}^{4}\text{He}$ reactions at $\text{E}_{\alpha} = 50 \text{ MeV}$ // Nucl. Phys. A. - 1970. - Vol. 152, No. 3. - P. 516 - 528.

- Павленко Ю. Н., Васильєв Ю. В., Гасс А. С. и др. Кинематически полный анализ (d, t) и (d, α)реакций на ядрах ⁹Ве при энергии дейтронов 13.6 МэВ // Тез. докл. 36 Совещ. по ядерной спектроскопии и структуре атомного ядра. – Л., 1986. - С. 320.
- Sonnemans M. A. A., Waal J. C., Van Dantzig R. Energy Correlations in the Teactions ⁹Be(d, tα)⁴He at 26.3 MeV // Phys. Rev. Lett. - 1973. - Vol. 31, No. 22. - P. 1359 – 1362.
- Von Witsch W., Ivanovich M., Otte V. A. et al. Final state interaction in ⁶Li(d; ⁶Li,p)n reaction // Nucl. Phys. A. - 1971. - Vol. 172, No. 3. - P. 516 -528.
- Павленко Ю. М., Кива В. О., Коломієць І. М. та ін. Методика багатопараметричних кореляційних вимірювань для досліджень ядерних реакцій // Зб. наук. праць Ін-ту ядерних досл. - 2005. -№ 2 (15). - С. 151 - 161.
- 16. Немец О. Ф., Павленко Ю. Н., Пугач В. М. Структура инклюзивных спектров трехчастичных ядерных реакций // Изв. АН СССР. Сер. физ. - 1989. - Т. 53, № 11. - С. 2183 - 2187.
- 17. Pavlenko Yu. N., Dobrikov V. N., Doroshko N. L. et al. A Search for excited states of ³He by the reaction ⁷Li(d,⁶He)³He // Ядерна фізика та енергетика. 2006. № 1 (17). С. 24 29.
- Pavlenko Yu. N. The method of branching ratio measurements for nuclear unbound states produced by three particle reactions // Problems of atomic science and technology. Ser. Nucl. Phys. Inv. - 2005.
 Vol. 6 (45). - P. 11 - 16.
- Павленко Ю. Н., Шаблов В. Л., Карманов Ф. И. и др. Возбуждение и распад резонансов ядра ⁷Li в трехчастичных каналах реакции α+⁷Li // Тез. докл. V конф. по физике высоких энергий, ядерной физике и ускорителям. - Харьков, 26 февраля - 2 марта 2007 г. - С. 49.
- 20. Komarov V. V., Popova A. M., Karmanov F. I. et al. Scattering properties of two-fragment systems

produced by many-particle reactions // Phys. of Elem. Part. and Atom. Nucl. - 1992. - Vol. 23, No. 4. - P. 1035 - 1087.

- Komarov V. V., Popova A. M., Shablov V. L. Dynamics of the systems of few quantum particles. – Moscow: Moscow University, 1996. - 334 p.
- 22. Немец О. Ф., Попова А. М., Комаров В. В. и др. Закономерности изменения свойств рассеяния двухфрагментных ядерных систем в многочастичных ядерных реакциях // Изв. АН СССР. Сер.физ. - 1990. - Т. 54, № 5. - С. 942 - 948.
- 23. Ohlsen G. G. Kinematic relations in reactions of the form $A + B \rightarrow C + D + E //$ Nucl. Instr. Meth. 1965. Vol. 37. P. 240 248.
- 24. Павленко Ю. Н., Кива В. А., Коломиец И. Н., Дорошко Н. Л. Моделирование условий наблюдения резонансных состояний ядер в многочастичных реакциях // Тез. докл. Междунар. конф. "Свойства возбужденных состояний атомных ядер и механизмы ядерных реакций". Саров, 2001. С. 59.
- 25. Karmanov F. I., Pavlenko Yu. N., Tyras I. A., Shablov V. L. Narrowing of near-threshold twobody resonances produced by three particle nuclear

reactions // Current Problems in Nuclear Physics and Atomic Energy: Book of Abstracts of the Int. Conf. (Kyiv, Ukraine, 29 May - 3 June 2006). - Kyiv, 2006. - P. 69.

- Nemets O. F., Pavlenko Yu. N., Shablov V. L. et al. Angular Correllations and Decay Branching Ratio for Unbound State of ⁷Li*(7.45 MeV) Excited at the Inelastic Scattering of Alpha-Particles by ⁷Li // Ibid. - P. 55.
- Пугач В. М., Павленко Ю. Н., Прокопец А. Г. и др. Соотношение вероятностей распадов высоковозбужденных состояний ядра ⁸Ве* в реакции ¹⁰В(d, α)2α и ¹⁰В(d, α)p⁷Li" // Изв. РАН. Сер. физ. – 1992. - Т. 56. - С. 129 - 133.
- 28. Arena N., Cavallaro Seb., Arrigo A. D. et al. The $J^{\pi} = 3/2+$, T = 1/2 ⁵Li level by the ⁶Li(³He,a)⁵Li reaction // Journ. Phys. G. 1990. Vol. 16. P. 1511 1515.
- Fazio G., Giardina G., Karmanov F. I., Shablov V. L. Properties of the Resonance Scattering in Two-Fragment Systems Formed in Many-Particle Nuclear Reactions // Int. Journ. Mod. Phys. E. - 1996. -Vol. 5. - P. 175 - 190.

УГЛОВЫЕ КОРРЕЛЯЦИИ И СООТНОШЕНИЕ ВЕТВЕЙ РАСПАДА ВОЗБУЖДЕННОГО СОСТОЯНИЯ ЯДРА ⁷Li*(7,45 МэВ) В РЕАКЦИИ ⁷Li(α, α)⁷Li*

<u>О. Ф. Немец</u>, Ю. Н. Павленко, В. Л. Шаблов, Ф. И. Карманов, В. А. Кива, В. Н. Добриков, О. К. Горпинич, И. Н. Коломиец, Б. А. Руденко, Ю. Я. Карлышев, А. П. Войтер, И. А. Мазный, С. Е. Омельчук, Ю. С. Рознюк

При энергии $E_{\alpha} = 27,2$ МэВ измерены дифференциальные сечения неупругого рассеяния α -частиц ядрами ⁷Li и трехчастичных реакций ⁷Li(α , α^{6} Li)n, ⁷Li(α , $\alpha\alpha$)t. Из отношения сечений, измеренных в кинематически полных и неполных экспериментах, определена вероятность распада ядра ⁷Li*(7,45 MэB) в канал ⁶Li+n (P = 0,49 ± 0,06). Это значение существенно отличается от данных, полученных при исследовании распада ⁷Li*(7,45 MeB) в бинарных реакциях, что может быть обусловлено влиянием кулоновского поля сопутствующей α -частицы на распад околопороговых резонансов в трехчастичных реакциях.

ANGULAR CORRELLATIONS AND DECAY BRANCHING RATIO FOR EXCITED STATE OF ⁷Li*(7,45 MeV) IN REACTIONS ⁷Li(α , α)⁷Li*

O. F. Nemets, Yu. N. Pavlenko, V. L. Shablov, F. I. Karmanov, V. O. Kyva, V. N. Dobrikov, O. K. Gorpinich, I. N. Kolomiets, B. A. Rudenko, Yu. Y. Karlyshev, A. P. Voiter, I. A. Mazny, S. E. Omelchuk, Yu. S. Roznuk

Measurements of differential cross-sections of α -particle inelastic scattering by ⁷Li nuclei and ⁷Li(α , α^{6} Li)n, ⁷Li(α , $\alpha\alpha$)t reactions have been performed at the energy $E_{\alpha} = 27,2$ MeV. Probability of ⁷Li*(7,45 MeV) decay into ⁶Li + n channel has been determined from the ratio of cross-sections measured in kinematically complete and incomplete experiments. The large discrepancy of this value (P = 0,49 ± 0,06) and of those obtained at the study of ⁷Li*(7,45 MeV) decay in binary reactions can be explained by the influence of Coulomb field of accompanied α -particle on the decay of near-threshold resonances in three-particle reactions.

Надійшла до редакції 01.01.06, після доопрацювання – 01.03.06.