ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Influence of the nuclear part of the nuclei interaction potential to the mass yields of fragments from fission of highly-excited nuclei
V. Yu. Denisov, T. O. Margitych*Abstract: The influence for various parameterizations of the nuclear part of the interaction potential to the mass yields of fission fragments of highly excited nuclei for the reaction α+197Au → fission was studied. It is shown that using of various nuclear potentials leads to small changes in the yields of fission fragments of the nuclei.
Keywords: nuclear interaction, parameterizations of the nuclear part of the interaction potential, nuclei fission, mass yields of fragments from fission.
References:1. D.L. Hill, J.A. Wheeler. Nuclear Constitution and the Interpretation of Fission Phenomena. Phys. Rev. 89 (1953) 1102. https://doi.org/10.1103/PhysRev.89.1102
2. P. Fong. Statistical Theory of Nuclear Fission: Asymmetric Fission. Phys. Rev. 102 (1956) 434. https://doi.org/10.1103/PhysRev.102.434
3. V.M. Strutinsky. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95 (1967) 420. https://doi.org/10.1016/0375-9474(67)90510-6
4. V.M. Strutinsky. “Shells” in deformed nuclei. Nucl. Phys. A 122 (1968) 1. https://doi.org/10.1016/0375-9474(68)90699-4
5. M. Brack et al. Funny hills: the shell-correction approach to nuclear shell effects and its applications to the fission process. Rev. Mod. Phys. 44 (1972) 320. https://doi.org/10.1103/RevModPhys.44.320
6. B.D. Wilkins, E.P. Steinberg, R.R. Chasman. Scission-point model of nuclear fission based on deformed-shell effects. Phys. Rev. C 14 (1976) 1832. https://doi.org/10.1103/PhysRevC.14.1832
7. A.J. Sierk. Macroscopic model of rotating nuclei. Phys. Rev. C 33 (1986) 2039. https://doi.org/10.1103/PhysRevC.33.2039
8. S. Oberstedt, F.-J. Hambsch, F. Vives. Fission-mode calculations for 239U, a revision of the multi-modal random neck-rupture model. Nucl. Phys. A 644 (1998) 289. https://doi.org/10.1016/S0375-9474(98)00598-3
9. K.-H. Schmidt et al. Relativistic radioactive beams: A new access to nuclear-fission studies. Nucl. Phys. A 665 (2000) 221. https://doi.org/10.1016/S0375-9474(99)00384-X
10. G.D. Adeev, P.N. Nadtochy. Probabilistic Scission of a Fissile Nucleus into Fragments. Phys. At. Nucl. 66 (2003) 618. https://doi.org/10.1134/1.1568813
11. H. Goutte, P. Casoli, J.-F. Berger. Mass and kinetic energy distributions of fission fragments using the time dependent generator coordinate method. Nucl. Phys. A 734 (2004) 217. https://doi.org/10.1016/j.nuclphysa.2004.01.038
12. R.G. Thomas et al. Entrance channel dependence of quasifission in reactions forming 220Th. Phys. Rev. C 77 (2008) 034610. https://doi.org/10.1103/PhysRevC.77.034610
13. A. Buttkewitz et al. Fission studies with 140 MeV α-particles. Phys. Rev. C 80 (2009) 037603. https://doi.org/10.1103/PhysRevC.80.037603
14. C.J. Lin et al. Energy dependence of fission-fragment mass distributions from strongly damped shape evolution. J. Phys.: Conf. Ser. 420 (2013) 012126. https://doi.org/10.1088/1742-6596/420/1/012126
15. V.Yu. Denisov, V.A. Plujko. Problems of Nuclear Physics and Nuclear Reactions (Kiev: Izdatel'sko-poligraficheskij tsentr "Kievskij universitet", 2013) 430 p. (Rus) Book
16. H. Eslamizadeh, H. Raanaei. Simulation of the fission dynamics of the excited compound nuclei 206Po and 168Yb produced in the reactions 12C + 194Pt and 18O + 150Sm. Ann. Nucl. Energy. 51 (2013) 252. https://doi.org/10.1016/j.anucene.2012.06.035
17. P.N. Nadtochy et al. Incorporation of a tilting coordinate into the multidimensional Langevin dynamics of heavy-ion-induced fission: Analysis of experimental data from fusion-fission reactions. Phys. Rev. C 89 (2014) 014616. https://doi.org/10.1103/PhysRevC.89.014616
18. F.A. Ivanyuk, S. Chiba, Y. Aritomo Scission-point configuration within the two-center shell model shape parameterization. Phys. Rev. C 90 (2014) 054607. https://doi.org/10.1103/PhysRevC.90.054607
19. K. Mazurek, C. Schmitt, P.N. Nadtochy Description of isotopic fission-fragment distributions within the Langevin approach. Phys. Rev. C 91 (2015) 041603. https://doi.org/10.1103/PhysRevC.91.041603
20. P. Moller et al. Fission barriers at the end of the chart of the nuclides. Phys. Rev. C 91 (2015) 024310. https://doi.org/10.1103/PhysRevC.91.024310
21. J. Sadhukhan, W. Nazarewicz, N. Schunck. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu. Phys. Rev. C 93 (2016) 011304. https://doi.org/10.1103/PhysRevC.93.011304
22. V.Yu. Denisov, T.O. Margitych, I.Yu. Sedykh. Mass yields and kinetic energy of fragments from fission of highly-excited nuclei with A ≤ 220. Nucl. Phys. A 958 (2017) 101. https://doi.org/10.1016/j.nuclphysa.2016.11.007
23. V.Yu. Denisov, I.Yu. Sedykh. Fission-fragment mass yields of highly excited nuclei with 119 ≤ A ≤ 218 produced in various reactions. Nucl. Phys. A 963 (2017) 15. https://doi.org/10.1016/j.nuclphysa.2017.04.002
24. A.J. Sierk. Macroscopic model of rotating nuclei. Phys. Rev. C 33 (1986) 2039. https://doi.org/10.1103/PhysRevC.33.2039
25. J. Blocki et al. Proximity forces. Ann. Phys. 105 (1977) 427. https://doi.org/10.1016/0003-4916(77)90249-4
26. H.J. Krappe, J.R. Nix, A.J. Sierk. Unified nuclear potential for heavy-ion elastic scattering, fusion, fissio’’n, and ground-state masses and deformations. Phys. Rev. C 20 (1979) 992. https://doi.org/10.1103/PhysRevC.20.992
27. A. Winther. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594 (1995) 203. https://doi.org/10.1016/0375-9474(95)00374-A
28. V.Yu. Denisov, N.A. Pilipenko. Interaction of two deformed, arbitrarily oriented nuclei. Phys. Rev. C 76 (2007) 014602. https://doi.org/10.1103/PhysRevC.76.014602
29. V.Yu. Denisov, N.A. Pilipenko. Interaction potential between two axially symmetric nuclei. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 4(22) (2007) 49. https://jnpae.kinr.kyiv.ua/22(4)/Articles_PDF/jnpae-2007-4(22)-0049-Denisov.pdf
30. V.Yu. Denisov, N.A. Pilipenko. Interaction between two axially symmetric nuclei. Ukr. J. Phys. 53 (2008) 845. http://archive.ujp.bitp.kiev.ua/files/journals/53/9/530902p.pdf
31. V.Yu. Denisov, N.A. Pilipenko. Fusion of deformed nuclei: 12C + 12C. Phys. Rev. C 81 (2010) 025805. https://doi.org/10.1103/PhysRevC.81.025805
32. V.Yu. Denisov. Nucleus-nucleus potential with shell-correction contribution and deep sub-barrier fusion of heavy nuclei. Phys. Rev. C 89 (2014) 044604. https://doi.org/10.1103/PhysRevC.89.044604
33. V.Yu. Denisov, T.O. Margitych. Barriers in the energy of deformed nuclei. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 15(2) (2014) 119. https://jnpae.kinr.kyiv.ua/15.2/Articles_PDF/jnpae-2014-15-0119-Denisov.pdf
34. V.Yu. Denisov, T.O. Margitych. Minimum barrier height for symmetric and asymmetric nuclear systems. Ukr. J. Phys. 60 (2015) 585.
35. V.Yu. Denisov, T.O. Margitych. Influence of deformations with higher multypolity to the barrier height of nuclei. Rep. Nat. Acad. Sci. Ukraine 4 (2015) 56. https://doi.org/10.15407/dopovidi2015.04.056
36. V.Yu. Denisov. Interaction potential between heavy ions. Phys. Lett. B 526 (2002) 315. https://doi.org/10.1016/S0370-2693(01)01513-1
37. V.Yu. Denisov. Nucleus-nucleus potential with shell-correction contribution. Phys. Rev. C 91 (2015) 024603. https://doi.org/10.1103/PhysRevC.91.024603
38. M. Brack, Ph. Quentin. Disappearance of shell effects at high excitation. Self-consistent calculations at finite temperatures. Phys. Scr. 10A (1974) 163. https://doi.org/10.1088/0031-8949/10/A/028
39. R. Capote et al. RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nucl. Data Sheets 110 (2009) 3107. https://doi.org/10.1016/j.nds.2009.10.004
40. V.Yu. Denisov, N.A. Pilipenko. Elastic scattering of heavy nuclei and nucleus–nucleus potential with repulsive core. Phys. At. Nucl. 73 (2010) 1152. https://doi.org/10.1134/S1063778810070082
41. B.V. Derjaguin. Untersuchungen fiber die Reibung und Adhasion, IV. Theorie des Anhaftens kleiner Teilchen. Kolloid-Z. 69 (1934) 155. https://doi.org/10.1007/BF01433225
42. G. Audi et al. The AME2012 atomic mass evaluation. Chin. Phys. C 36(12) (2012) 1287. https://doi.org/10.1088/1674-1137/36/12/002