Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2017, volume 18, issue 1, pages 43-47.
Section: Radiation Physics.
Received: 27.03.2017; Accepted: 15.06.2017; Published online: 7.08.2017.
PDF Full Text (ua)
https://doi.org/10.15407/jnpae2017.01.043

Distribution of concentration of impurities and "impurity–vacancy" complexes beyond the range of ions during implantation

V. I. Sugakov*, A. A. Chernyuk

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: sugakov@kinr.kiev.ua.

Abstract: Spatial distribution of implanted atoms and point defects created by irradiation is calculated beyond the range of ions in the crystal with impurities. Diffuse movement of defects and impurities, their capture by their effluents, the processes of recombination defects, formation and decay of complexes are taken into account. The crystal is considered at the temperature when impurities are still and impurity complexes with vacancies can move in the crystal. This situation is realized in silicon mixed with the oxygen. It is shown that the spatial redistribution of the concentrations of free impurities and impurities connected with vacancies is taking place beyond the range of ions: certain region at the end of ion range becomes impoverished in complexes and enriched in free impurities. This region increases with lowering the dislocations density or with decreasing temperature and can reach the size of several tens of micrometers.

Keywords: ion irradiation, defects, impurities, long-range.

References:

1. P.V. Pavlov, V.I. Pashkin, V.M. Genkin et al., FTT 15, No. 9 (1973) 2857 - 2859. (Rus)

2. V.D. Skupov, D.I. Tetel'baum, G.V. Shungurov, Pis'ma v ZhTF 15, No. 22 (1989) 44 - 47. (Rus) http://journals.ioffe.ru/articles/viewPDF/32137

3. V.N. Bykov, V.G. Malynkin, V.S. Khmelevskaya, Voprosy Atomnoj Nauki i Tekhniki. Ser.: Fizika radiatsionnykh povrezhdenij i radiatsionnoe materialovedenie 3 (1989) 45 - 52. (Rus)

4. A.L. Pivovarov, Metallofizika i Novejshie Technologii 16, No. 12 (1994) 3 - 17. (Rus)

5. V.S. Khmelevskaya, V.G. Malynkin, S.P. Solov'ev et al., Pis'ma v ZhTF 22, No. 5 (1996) 9 - 13. (Rus) http://journals.ioffe.ru/articles/viewPDF/20381

6. A.S. Alalykin, P.N. Krylov, M.V. Shinkevich, Vestnik Udmurtskogo Universiteta 1 (2005) 141 - 152. (Rus)

7. A.A. Groza, P.G. Lytovchenko, M.I. Starchyk, Effects of Radiation in the Infrared Absorption and Silicon Structure, Kyiv: Naukova Dumka (2006), 124 p. (Ukr)

8. V.V. Ovchinnikov, UFN 178, No. 9 (2008) 991 - 1001. (Rus) http://doi.org/10.3367/UFNr.0178.200809f.0991

9. Li Zhang, Guangze Tang, Xinxin Ma, Long range effect of ion irradiation on diffusion, Physics Letters A 374 (2010) 2137 - 2139. https://doi.org/10.1016/j.physleta.2010.03.018

10. A.A. Groza, E.F. Venger, V.I. Varnina et al., Influence of neutron irradiation on electrooptical and structural properties of silicon, Semiconductor Physics, Quantum Electronics and Optoelectronics 4, No. 3 (2001) 152 - 155. http://journal-spqeo.org.ua/users/pdf/n3_2001/152_4_3.pdf

11. V.I. Sugakov, Yaderna F³zyka ta Energetyka (Nucl. Phys. At. Energy) 10, No. 4 (2009) 395 - 402. (Rus) https://jnpae.kinr.kyiv.ua/10.4/Articles_PDF/jnpae-2009-10-0395-Sugakov.pdf

12. V.I. Sugakov, FTT 53, No. 10 (2011) 2023 - 2031. (Rus) http://journals.ioffe.ru/articles/viewPDF/1599

13. R.C. Newman, Oxygen diffusion and precipitation in Czochralski silicon, J. Phys.: Condens. Matter. 12 (2000) R335 - R365. https://doi.org/10.1088/0953-8984/12/25/201

14. L.A. Marques, L. Pelaz, P. Castrillo et al., Molecular dynamics study of the configurational and energetic properties of the silicon self-interstitial, Phys. Rev. B 71 (2005) 085204. https://doi.org/10.1103/PhysRevB.71.085204

15. P. Pellegrino, P. Leveque, J. Lavita et al., Annealing kinetics of vacancy-related defects in low-dose MeV self-ion-implanted n-type silicon, Phys. Rev. B 64 (2001) 195211. https://doi.org/10.1103/PhysRevB.64.195211

16. D.R. Kaplan, C. Weigel, J.W. Corbett, Calculations on the properties of helium in silicon, Physica status solidi (b) 94 (1979) 359. https://doi.org/10.1002/pssb.2220940204

17. Y. Shimiso, M. Uematsu, K.M. Itoh, Experimental evidence of the vacancy-mediated silicon self-diffusion in single-crystalline silicon, Phys. Rev. Lett. 98 (2007) 095901. https://doi.org/10.1103/PhysRevLett.98.095901

18. R.A. Casali, H. Rucker, M. Methfessel, Interaction of vacancies with interstitial oxygen in silicon, Appl. Phys. Lett. 78 (2001) 913 - 915. http://doi.org/10.1063/1.1347014

19. V. Ranki, K. Saarinen, Formation of thermal vacancies in highly As and P doped Si, Phys. Rev. Lett. 93 (2004) 255502. https://doi.org/10.1103/PhysRevLett.93.255502

20. L. Lerner, N.A. Stolwijk, Vacancy concentrations in silicon determined by the indiffusion of iridium, Appl. Phys. Lett. 86 (2005) 011901. http://dx.doi.org/10.1063/1.1844031

21. H. Bracht, J.F. Pedersen, N. Zangenberg et al., Radiation enhanced silicon self-diffusion and the silicon vacancy at high temperatures, Phys. Rev. Lett. 91 (2003) 245502. https://doi.org/10.1103/PhysRevLett.91.245502