ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Distribution of concentration of impurities and "impurity–vacancy" complexes beyond the range of ions during implantation
V. I. Sugakov*, A. A. ChernyukAbstract: Spatial distribution of implanted atoms and point defects created by irradiation is calculated beyond the range of ions in the crystal with impurities. Diffuse movement of defects and impurities, their capture by their effluents, the processes of recombination defects, formation and decay of complexes are taken into account. The crystal is considered at the temperature when impurities are still and impurity complexes with vacancies can move in the crystal. This situation is realized in silicon mixed with the oxygen. It is shown that the spatial redistribution of the concentrations of free impurities and impurities connected with vacancies is taking place beyond the range of ions: certain region at the end of ion range becomes impoverished in complexes and enriched in free impurities. This region increases with lowering the dislocations density or with decreasing temperature and can reach the size of several tens of micrometers.
Keywords: ion irradiation, defects, impurities, long-range.1. P.V. Pavlov, V.I. Pashkin, V.M. Genkin et al., FTT 15, No. 9 (1973) 2857 - 2859. (Rus)
2. V.D. Skupov, D.I. Tetel'baum, G.V. Shungurov, Pis'ma v ZhTF 15, No. 22 (1989) 44 - 47. (Rus) http://journals.ioffe.ru/articles/viewPDF/32137
3. V.N. Bykov, V.G. Malynkin, V.S. Khmelevskaya, Voprosy Atomnoj Nauki i Tekhniki. Ser.: Fizika radiatsionnykh povrezhdenij i radiatsionnoe materialovedenie 3 (1989) 45 - 52. (Rus)
4. A.L. Pivovarov, Metallofizika i Novejshie Technologii 16, No. 12 (1994) 3 - 17. (Rus)
5. V.S. Khmelevskaya, V.G. Malynkin, S.P. Solov'ev et al., Pis'ma v ZhTF 22, No. 5 (1996) 9 - 13. (Rus) http://journals.ioffe.ru/articles/viewPDF/20381
6. A.S. Alalykin, P.N. Krylov, M.V. Shinkevich, Vestnik Udmurtskogo Universiteta 1 (2005) 141 - 152. (Rus)
7. A.A. Groza, P.G. Lytovchenko, M.I. Starchyk, Effects of Radiation in the Infrared Absorption and Silicon Structure, Kyiv: Naukova Dumka (2006), 124 p. (Ukr)
8. V.V. Ovchinnikov, UFN 178, No. 9 (2008) 991 - 1001. (Rus) http://doi.org/10.3367/UFNr.0178.200809f.0991
9. Li Zhang, Guangze Tang, Xinxin Ma, Long range effect of ion irradiation on diffusion, Physics Letters A 374 (2010) 2137 - 2139. https://doi.org/10.1016/j.physleta.2010.03.018
10. A.A. Groza, E.F. Venger, V.I. Varnina et al., Influence of neutron irradiation on electrooptical and structural properties of silicon, Semiconductor Physics, Quantum Electronics and Optoelectronics 4, No. 3 (2001) 152 - 155. http://journal-spqeo.org.ua/users/pdf/n3_2001/152_4_3.pdf
11. V.I. Sugakov, Yaderna F³zyka ta Energetyka (Nucl. Phys. At. Energy) 10, No. 4 (2009) 395 - 402. (Rus) https://jnpae.kinr.kyiv.ua/10.4/Articles_PDF/jnpae-2009-10-0395-Sugakov.pdf
12. V.I. Sugakov, FTT 53, No. 10 (2011) 2023 - 2031. (Rus) http://journals.ioffe.ru/articles/viewPDF/1599
13. R.C. Newman, Oxygen diffusion and precipitation in Czochralski silicon, J. Phys.: Condens. Matter. 12 (2000) R335 - R365. https://doi.org/10.1088/0953-8984/12/25/201
14. L.A. Marques, L. Pelaz, P. Castrillo et al., Molecular dynamics study of the configurational and energetic properties of the silicon self-interstitial, Phys. Rev. B 71 (2005) 085204. https://doi.org/10.1103/PhysRevB.71.085204
15. P. Pellegrino, P. Leveque, J. Lavita et al., Annealing kinetics of vacancy-related defects in low-dose MeV self-ion-implanted n-type silicon, Phys. Rev. B 64 (2001) 195211. https://doi.org/10.1103/PhysRevB.64.195211
16. D.R. Kaplan, C. Weigel, J.W. Corbett, Calculations on the properties of helium in silicon, Physica status solidi (b) 94 (1979) 359. https://doi.org/10.1002/pssb.2220940204
17. Y. Shimiso, M. Uematsu, K.M. Itoh, Experimental evidence of the vacancy-mediated silicon self-diffusion in single-crystalline silicon, Phys. Rev. Lett. 98 (2007) 095901. https://doi.org/10.1103/PhysRevLett.98.095901
18. R.A. Casali, H. Rucker, M. Methfessel, Interaction of vacancies with interstitial oxygen in silicon, Appl. Phys. Lett. 78 (2001) 913 - 915. http://doi.org/10.1063/1.1347014
19. V. Ranki, K. Saarinen, Formation of thermal vacancies in highly As and P doped Si, Phys. Rev. Lett. 93 (2004) 255502. https://doi.org/10.1103/PhysRevLett.93.255502
20. L. Lerner, N.A. Stolwijk, Vacancy concentrations in silicon determined by the indiffusion of iridium, Appl. Phys. Lett. 86 (2005) 011901. http://dx.doi.org/10.1063/1.1844031
21. H. Bracht, J.F. Pedersen, N. Zangenberg et al., Radiation enhanced silicon self-diffusion and the silicon vacancy at high temperatures, Phys. Rev. Lett. 91 (2003) 245502. https://doi.org/10.1103/PhysRevLett.91.245502