УДК 556.314: 504.43.06 (477.41)

https://doi.org/10.15407/jnpae2017.01.056

## М. І. Панасюк, І. А. Литвин

Інститут проблем безпеки АЕС НАН України, Чорнобиль

# ЗАКОНОМІРНОСТІ РОЗПОДІЛУ УРАНУ В ПІДЗЕМНИХ ВОДАХ ПРОММАЙДАНЧИКА ЧАЕС

За останні роки спостерігається значне (2 - 12 разів) підвищення концентрацій урану та трансуранових елементів у підземних водах на ділянці біля зруйнованого 4-го блока ЧАЕС. У статті показано, що підвищення міграційної здатності урану в підземних водах відбувається при зростанні рН вище 9 - 10 у відновлюваному чи перехідному середовищі на фоні значних підвищень концентрацій основних іонів:  $K^+$ ,  $Na^+$ ,  $Ca^{2+}$ ,  $CO_3^{2-}$ ,  $NO_3^{-}$ ,  $NO_2^{-}$ .

Ключові слова: проммайданчик ЧАЕС, підземні води, паливний уран, основні іони, рН, підвищена міграція.

### Вступ

Традиційно вважається, що уран у підземних водах [1 - 3] у перехідному та відновлювальному, як правило, лужному середовищі зазвичай знаходиться в чотирьохвалентному стані, який випадає з розчину і не мігрує з підземними водами. Разом з тим за результатами проведення регламентних робіт у рамках радіогідроекологічного моніторингу в районі об'єкта «Укриття» спостерігається зростання у 2 - 12 разів концентрацій урану та трансуранових елементів (ТУЕ) у пробах води по ряду свердловин [4]. Раніше формування підвищених концентрацій плутонію в підземних водах чорнобильської зони було виявлено в «Рудому лісі» при вивченні міграції радіонуклідів із траншеї, де були захоронені радіоактивні відходи при дезактивації території [5]. У цій роботі показано, що підвищена міграційна здатність пов'язана з наявністю фракції плутонію з низькою молекулярною масою (<1 kDa). У роботі [6], навпаки, стверджується, що актиноїди в ґрунтових водах знаходяться у фракціях колоїдних частинок розміром 5 - 50 нм та у фільтраті. При цьому наводяться дані, що в грунтових водах усі форми актиноїдів включаються в колоїдний матеріал й одночасно всі ці форми знаходяться в розчинному стані. У роботі [7] обговорюються питання впливу величини рН в інтервалі значень 1 - 8 на сорбцію глиною U(VI) і робиться припущення, що при підвищенні рН розчину можливе утворення поліядерних колоїдних форм, що визначає повну відсутність сорбції U(VI) у нейтральному та слаболужному середовищі.

Наша стаття написана на основі регламентних спостережень і спеціальних досліджень механізму формування підвищеної міграції урану залежно від величини рН поки що не проводилося. Мета даної роботи полягала перш за все в тому, щоб підтвердити факти існування в реальних польових умовах підвищення міграції урану в сильнолужному перехідному та відновлювальному середовищі. Нами досліджено, що зростання рН підземних вод вище 9 - 10 призводить до підвищення міграційної здатності урану на порядок величин. Таке явище може мати значні негативні наслідки для екологічної безпеки довкілля. Підземні води від об'єкта «Укриття» розвантажуються в русло р. Прип'ять. Радіонукліди, що не сорбуються ґрунтами, з потоком підземних вод можуть досягнути р. Прип'ять за 40 років. Таким чином, підвищена міграція радіонуклідів із підземних вод є небезпекою для джерела питної води населення України – р. Прип'ять, яка відноситься до басейну р. Дніпро.

## Матеріали та методи

Регламентне опробування безнапірного водоносного горизонту проводиться по 50 спостережних свердловинах, розташованих навколо будівлі 2-ї черги ЧАЕС (3-й і 4-й блоки).

Спостережні свердловини, як правило, обладнані фільтровими колонами з труб з інертного матеріалу – полівінілхлориду (ПВХ), їхній діаметр 110 - 125 мм. Інтервал робочої частини фільтрової колони для таких свердловин має довжину 2 - 3 м. Власне фільтр є керамічним або поліпропіленовим із гравійним покриттям із чистого кварцу, що не вимагає гравійної обсипки. Але деякі свердловини (5-1А, 6-1А, 2-Г та 4-Г (ліквідована в 2008 р.)), пробурені та обладнані до 1995 р., мають металеві фільтрові колони. Інтервал робочої частини фільтра в даних свердловинах має довжину 1 - 2 м і створений із перфорованих труб діаметром 89 або 146 мм з сіткою галунного плетення. У цих свердловинах в інтервалі глибин робочої частини фільтрової колони виконана гравійна обсипка.

Відбір проб проводиться після прокачки в об'ємі трьох-чотирьох стовпів води в спостережній свердловині. У процесі прокачки здійсню-

© М. І. Панасюк, І. А. Литвин, 2017

ються вимірювання pH, Eh та T °C за допомогою польового pH-метра MultiLine P 4. Похибка визначення вищенаведених параметрів  $\pm 0.5$  %.

Проби відбираються в поліетиленові ємкості об'ємом 1,5 л. Проби не підкислюються, доставляються в лабораторію не пізніше 2 год з моменту відбору.

Глибина залягання рівня ґрунтових вод змінюється від 7 до 16 м залежно від гіпсометрії денної поверхні. Потужність безнапірного водоносного горизонту ≈ 28 м. Рух ґрунтових вод направлено з південного заходу на північний схід, з ухилом 0,001 - 0,002 і дійсною швидкістю руху 20 - 30 м/рік. На ділянці розташування купола розтікання (свердловини 8-1А, 9-2А, 7985), за рахунок додаткового живлення ґрунтових вод біля першого уступу каскадної стіни, ухил поверхні водоносного горизонту дорівнює 0,0074, а дійсна швидкість досягає значень 250 м/рік. Розвантаження безнапірного водоносного горизонту здійснюється в районі оз. Азбучин в русло р. Прип'ять, яке розташоване по лінії току ґрунтових вод на відстані 1200 м.

Джерелами надходження урану та ТУЕ в підземні води є: витоки за межі об'єкта «Укриття» блокової води; втрати радіоактивно забрудненої води з комунікацій; фільтрація води з будівельних котлованів; інфільтраційні води.

За останній період спостерігається зростання у 2 - 12 разів концентрацій урану та ТУЕ у пробах води по ряду свердловин, що потребує додаткового аналізу радіаційної обстановки, яка складається в підземний водах, а також умов та механізмів формування підвищених міграційних властивостей актиноїдів.

Об'ємні питомі активності радіонуклідів у пробах ґрунтових вод визначаються в лабораторіях відділу радіаційного моніторингу відділення ядерної та радіаційної безпеки ІПБ АЕС НАН України. Уран, плутоній та <sup>241</sup>Am у пробах води визначався на 8-канальному альфа-спектрометрі фірми EG & G ORTEC OCTETE PC із напівпровідниковими кремнієвими детекторами серії BU-017-450-100 ULTRA з ефективністю реєстрації 25 % при відстані від джерела 12 мм. Визначення виконувалися після іонообмінного виділення. Для визначення хімічного виходу урану, плутонію та <sup>241</sup>Am вносилися мітки <sup>232</sup>U, <sup>242</sup>Pu та <sup>243</sup>Ат. Підготовка проб полягала в послідовному фільтруванні води через паперовий фільтр «Біла стрічка» та мембранний фільтр з розміром пор 0,2 мкм. Потім проводилося упарювання проб об'ємом від 1,5 до 2 л до вологих солей. Далі озолення органічних складових виконувалося обробкою сухого залишку концентрованої HNO3 з додаванням H<sub>2</sub>O<sub>2</sub>. Похибка визначення <sup>235</sup>U 30 - 40 %. Похибка визначення активності  $^{234}$ U,  $^{238}$ U,  $^{238}$ Pu,  $^{239+240}$ Pu та  $^{241}$ Am в межах 15 - 30 %. Енергетичне розділення 19 кеВ на лінії 5486 кеВ ( $^{241}$ Am). Власний фон для енергій вище 3 МеВ не більше одного імпульсу на годину.

## Результати

Концентрації урану в ґрунтових водах локальної зони об'єкта «Укриття» і прилеглої території за останні роки змінювалися в широких межах – від 0,083 до 25,8 мкг/дм<sup>3</sup>. Найбільші значення концентрацій урану від 1,5 до 25,8 мкг/дм<sup>3</sup> виявлено у пробах із свердловин 16-1А, 1-3А, 1-4А, 4-2Г, 9-2А, 2-Г та 10-2А, що розташовані нижче по потоку ґрунтових вод від об'єкта «Укриття» (рис. 1).



Рис. 1. Розподіл концентрацій урану у пробах ґрунтових вод.

Високі концентрації урану формуються за рахунок міграції з підземними водами паливного урану. Зазвичай концентрація природного урану у воді алювіального водоносного горизонту не перевищує 0,2 мкг/дм<sup>3</sup>. Також про наявність у пробах паливного урану може вказувати аналіз співвідношень активностей  $A^{234}U/A^{238}U$ .

У роботі [8] показано, що про присутність паливного урану в підземних водах проммайданчика ЧАЕС можна робити висновок по співвідношенню активностей  $A^{234}U/A^{238}U$ , які перевищують значення 1,1 - 1,15. Для природних мінералів, що містять уран, це співвідношення переважно становить 1. Так, у пробах води із свердловини 16-1А співвідношення активностей  $A^{234}U/A^{238}U$  було 2,5 ± 0,5, що явно вказує на присутність паливного урану, для якого характерним є співвідношення активностей  $A^{234}U/A^{238}U$  в межах 1,69 - 3,06 (див. [8]). Крім того, у пробах води із свердловини 16-1А детектується <sup>236</sup>U, який відноситься виключно до паливного урану.

Однією із закономірностей поведінки урану та ТУЕ є те, що підвищення їхніх об'ємних питомих активностей у пробах підземних вод, як правило, відбувається на фоні змін хімічного складу грунтових вод. Як видно з рис. 2, у 2012 р. зафіксовано зростання в 3 рази по відношенню до опробування 2010 р. об'ємних питомих активностей урану у пробах підземних вод із свердловини 16-1А. Разом з тим у 2012 р. (рис. 3) також підвищились концентрації іонів калію, натрію та інших основних іонів. Повторно у 2014 - 2015 рр. у пробах із свердловини 16-1А спостерігається зростання концентрацій урану у 2-3 рази, а концентрації <sup>238</sup>Ри, <sup>239 + 240</sup>Ри і <sup>241</sup>Ат зросли майже на порядок. При цьому спостерігається підвищення в основному в 1,4 - 1,75 раза концентрацій іонів калію, натрію та кальцію. А концентрації іонів нітратів та нітритів зросли істотно – в 1,4 - 7 та в 40 - 300 разів відповідно. Таким чином, можна констатувати тісний зв'язок концентрацій урану з концентраціями в підземних водах деяких основних іонів. Зокрема, коефіцієнти кореляції концентрацій урану з концентраціями калію, натрію та кальцію у пробах із свердловини 16-1А дорівнюють 0,69, 0,77 та 0, 61 відповідно.



Рис. 2. Динаміка об'ємних питомих активностей урану і ТУЕ у пробах ґрунтових вод зі свердловини 16-1А.



Рис. 3. Динаміка концентрацій Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup> та значень pH у пробах із свердловини 16-1А за час спостережень.

Усі ці зміни відбуваються на фоні зростання у пробах із свердловини 16-1А у 2014 - 2015 рр. значень pH (рис. 4). Середнє значення pH у 2014 - 2015 рр. становило 10,2, тоді як у 2010 - 2013 рр. – 9,5. При цьому кількість величин pH в інтервалі значень 10 - 11 у 2010 - 2013 рр. становила 7,7 %, а у 2014 - 2015 рр. вона підвищилась до 66,7 %.

Аналогічні закономірності зростання концентрацій урану при високих значеннях рН підземних вод простежуються й у пробах із свердловини 2-Г. На рис. 5 період спостереження по свердловині 2-Г 1996 - 2015 рр. розділений на періоди й підперіоди залежно від величини рН та значень об'ємної питомої активності <sup>90</sup>Sr.



Рис. 4. Розподіл значень pH у пробах підземних вод із свердловини 16-1А: *a* – за період 2010 - 2013 рр.; *б* – за період 2014 - 2015 рр.



Рис. 5. Розподіл значень pH, концентрацій основних іонів та об'ємної питомої активності <sup>90</sup>Sr у пробах ґрунтової води із свердловини 2-Г.



Рис. 6. Динаміка значень pH та концентрацій урану у пробах ґрунтових вод із свердловини 2-Г. Зверху зазначено період III, який за часом збігається з періодом III з рис. 5.

Підвищення об'ємної питомої активності <sup>90</sup>Sr у пробах ґрунтових вод збігається з початком періоду III (лютий 2011 р.). На цей же період припадає зростання величини рН здебільшого до значень 9,5 - 10,5 і, починаючи з 2014 р., зафіксовано різке підвищення концентрацій урану у пробах води до 11,6 мкг/дм<sup>3</sup> (рис. 6). Підвищення концентрацій урану у пробах із свердловини 2-Г (з жовтня 2014 р.) зафіксовано із затримкою на два роки відносно часу початку підвищення об'ємної питомої активності <sup>90</sup>Sr та концентрацій іонів Na<sup>+</sup>, K<sup>+</sup>, CO<sub>3</sub><sup>2-</sup>, NO<sub>2</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup> та інших основних іонів і показника pH.

За даними дослідження фазового розподілу урану та інших радіонуклідів у пробах ґрунтових вод із спостережних свердловин локальної зони об'єкта «Укриття» [9, 10] по свердловині 4-Г для періоду III (pH > 9,2 – 10) спостерігається підвищення частки урану в іонно-дисперсній (розчинній) формі у 2,5 раза в порівнянні з періодом II (pH = 8,1) (рис. 7),

Аналогічні дослідження проводились і по свердловині 2-Г, фазовий розподіл урану по якій вивчався у 2009 - 2012 рр. [11, 12]. У пробах з даної свердловини уран в іонно-дисперсній аніонній та катіонній формах для періоду III по відношенню до періоду II також зростає майже вдвічі. При цьому частка урану у грубодисперсній формі відповідно зменшується орієнтовно з 40 до 10 % (рис. 8).





Рис. 7. Гістограми фазового розподілу концентрацій урану в підземних водах по свердловині 4-Г залежно від періодів II та III (табл. 1).

Рис. 8. Гістограми фазового розподілу концентрацій урану в підземних водах по свердловині 2-Г. Періоди II та III по часу виділено аналогічно з рис. 7 (табл. 2).

Таблиця 1. Фазовий розподіл концентрацій урану в пробах підземних вод із свердловини 4-Г, % від концентрацій урану [9, 10]

| Дата | Період | Концентрація урану<br>у воді, мкг/дм <sup>3</sup> | Фаза (розмір частинок, мкм) |               |                |           |  |
|------|--------|---------------------------------------------------|-----------------------------|---------------|----------------|-----------|--|
|      |        |                                                   | грубодисперсна              |               | колоїдна       | іонно-    |  |
|      |        |                                                   | > 0,2 мкм                   | 0,1 - 0,2 мкм | 0,01 - 0,1 мкм | дисперсна |  |
| 2001 | II     | 470                                               | 58                          | 3,3           | 0,8            | 37,9      |  |
| 2003 | III    | 100                                               | 8,6                         | 0             | 0              | 91,4      |  |

Таблиця 2. Фазовий розподіл концентрацій урану в пробах підземних вод із свердловини 2-Г, % від концентрацій урану [11, 12]

| Дата | Період | Концентрація<br>урану у воді,<br>мкг/дм <sup>3</sup> | Фаза (розмір частинок, мкм) |               |                |                   |                  |  |
|------|--------|------------------------------------------------------|-----------------------------|---------------|----------------|-------------------|------------------|--|
|      |        |                                                      | грубодисперсна              |               | колоїдна       | іонно-дисперсна   |                  |  |
|      |        |                                                      | > 2 мкм                     | 0,1 - 0,2 мкм | 0,01 - 0,1 мкм | катіонна<br>форма | аніонна<br>форма |  |
| 2009 | II     | 8,52                                                 | 20,89                       | 19,84         | 21,71          | не виявлено       | 37,56            |  |
| 2012 | III    | немає даних                                          | 9,77                        | 2,82          | 23,5           | 27,07             | 36,84            |  |

## Обговорення результатів

Несподіваним результатом опробування свердловин 16-1А та 2-Г та інших є те, що спостерігається підвищення концентрацій урану при підвищенні значень рН вище 9 - 10 і зниженні величини  $Eh = (+30) \div (-10)$ , які властиві відновлювальному чи перехідному середовищу. Як наведено у вступі даної статті, із літературних джерел відомо, що у відновлювальному, як правило, лужному середовищі уран у підземних водах зазвичай знаходиться в чотирьохвалентному стані, який випадає з розчину і не мігрує з підземними водами. А в умовах об'єкта «Укриття» в сильно лужному середовищі (pH = 9 - 12) у перехідному чи відновлювальному середовищі по ряду свердловин спостерігається підвищення міграційної здатності урану. Але якщо більш детально аналізувати валентність та форми знаходження урану по Eh - pH діаграмах системи U - OH [13, 14 та 15], то виявляється, що при pH 9 - 11 та Ећ вище мінус 200 мВ (відновлювальна обстановка в інтервалі Eh = mihyc 200 - 0 mB) ypah в підземних водах може бути у формі  $UO_2(OH)_3^{[-]}$ , в якій цей елемент знаходиться в шестивалентному стані (рис. 9).



Рис. 9. Еh - pH діаграма для системи U-O-H. Дані pH та Eh підземних вод по свердловинах 16-1А та 2-Г нанесено точками.

Але ця форма знаходження урану розрахована для водних розчинів урану. В умовах присутності значної кількості карбонатів, що характерно для підземних вод в районі об'єкта «Укриття», форми знаходження урану, згідно з [13], мають виглядати так:  $UO_2(CO_3^{2^-})_3^{4^-}$  або  $UO_2(CO_3^{2^-})_2(H_2O)_2^{2^-}$ . Уран у цих формах також є шестивалентним.

Таким чином, незалежно від джерел надходження в підземні води радіоактивного забруднення при значеннях pH вище 9 - 10 (період III) спостерігається підвищення міграційної здатності урану. При цьому частка урану в іоннодисперсному (розчинному) стані збільшується в 2 - 2,5 раза порівняно з дослідженнями, які припадали до періоду II (pH = 8 - 9).

#### Висновки

1. В умовах об'єкта «Укриття» значне у 2 -12 разів підвищення у пробах ґрунтових вод концентрацій урану відбувається в умовах сильнолужного середовища при значення pH вище 9 - 10.

2. Як правило, передумовами підвищення в пробах ґрунтових вод в районі об'єкта «Укриття» концентрацій урану є підвищення концентрацій іонів калію, натрію, нітратів, нітритів та інших основних іонів в 1, 4 - 300 разів і величини рН на 1 - 3 одиниці.

3. Імовірно, що в умовах проммайданчика ЧАЕС у сильнолужному середовищі уран не

## СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- 1. *Белицкий А.С., Орлова Е.И.* Охрана подземных вод от радиоактивных загрязнений. Москва: Медицина, 1968.
- 2. Коротков А.И., Павлов А.Н. Гидрохимический метод в геологии и гидрогеологии. Ленинград: Недра, 1972.
- 3. *Крайнов С.Р., Швец В.М.* Гидрогеохимия. Москва: Недра, 1992.
- 4. Радиогидроэкологический мониторинг в районе объекта «Укрытие». Этап 2. Проведение радиогидроэкологического мониторинга по второму этапу 2015 г.» : отчет о НИР / Рук. Н. И. Панасюк. № ГР 0115U005355. - Чернобыль, 2015.
- Levchuk S., Kashparov V., Maloshtan I. et al. Migration of transuranic elements in groundwater from the near-surface radioactive waste site // Applied Geochemistry. - 2012. - Vol. 27, No. 7. - P. 1339 - 1347.
- 6. Новиков А.П., Калмыков А.Н., Ткачев В.В. Формы существования и миграции актиноидов в окружающей среде // Ж. Рос. хим. об-ва им. Д. И. Менделеева. 2005. Т. XLIX, № 2. С. 119 126.
- Корнилович Б.Ю., Пшинко Г.Н., Ковальчук И.А. Влияние фульвокислот на взаимодействие U (VI) с глинистыми компонентами почв // Радиохимия. - 2001. - Т 43, № 5. - С. 464 - 467.

сорбується чи слабо сорбується ґрунтами, що призводить до підвищення його міграційної здатності з підземними водами з очевидними негативними наслідками цього процесу.

4. Підземні води від об'єкта «Укриття» розвантажуються в русло р. Прип'ять. Радіонукліди, що не сорбуються ґрунтами, з потоком підземних вод можуть досягнути русла р. Прип'ять за 40 років, а ділянки її заплави – через 20 років. Таким чином, підвищена міграція радіонуклідів з підземних вод є небезпекою для джерела питної води населення України - р. Прип'ять, яка відноситься до басейну р. Дніпро.

5. Сильнолужне середовище в підземних водах в районі об'єкта «Укриття», вірогідно, формується за рахунок вилуговування бетону фундаментів, підземних комунікацій чи споруд при контакті з ними підземних вод.

6. Очікується, що при тривалому контакті підземних вод із бетоном пальового фундаменту НБК, який заглиблений у водоносний горизонт на 15 м, у ґрунтових водах буде формуватись сильнолужне відновлювальне середовище, що може призвести до підвищення міграційної здатності урану.

Автори висловлюють глибоку подяку В. Є-І. Хану та О. О. Одінцову за виконані лабораторні визначення концентрацій урану та ТУЕ у пробах грунтових вод.

- Панасюк Н.И. Распределение урана в подземных водах промплощадки ЧАЭС // Проблеми безпеки атомних електростанцій і Чорнобиля. - 2010. -Вип. 13. - С. 128 - 135.
- 9. Руденко Л.И., Хан В.Е.-И., Панасюк Н.И. Физико-химическое обоснование миграции радионуклидов из объекта «Укрытие» и его промплощадки в грунтовые воды // Радиохимия. 2003. Т. 45, № 3. С. 268 272.
- Руденко Л.И., Хан В. Е.-И. Вклад микрочастиц в механизм миграции радионуклидов из объекта «Укрытие» и его промплощадки в грунтовые воды // Радиохимия. - 2005. - Т. 47, № 1. - С. 89 -90.
- Міграція альфа-випромінюючих радіонуклідів з об'єкта «Укриття» в ґрунтові води та механізм їх реалізації: анотований звіт по НДР / Інститут біоорганічної хімії та нафтохімії НАН України. -Київ, 2010.
- 12. Дослідження складу альфа-випромінюючих радіонуклідів в грунтових водах проммайданчика Чорнобильської АЕС. Етап 2012 р. Дослідження фазового розподілу концентрації цезію, стронцію, урану і трансуранових елементів: звіт про НДР (проміжний) / Кер. Л. І. Руденко; Інститут біоорганічної хімії та нафтохімії НАН України.

### № ДР 0111U002825. - Київ, 2012.

- Garrels R.M., Christ C.L. Solutions, Minerals, and Equilibria. - San Francisco: Freeman, Cooper & Co., 1965. - 450 p.
- Pourbaix M.J.N. Thermodynamics of Dulite Aqueous Solutions. - London: Edwar Arnold and Co., 1949. - 136 p.
- Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases. Geological Survey of Japan Open File Report No. 419 / National Institute of Advanced Industrial Science and Technology. Research Center for Deep Geological Environments. Naoto TAKENO. May 2005.

## Н. И. Панасюк, И. А. Литвин

Институт проблем безопасности АЭС НАН Украины, Чернобыль

### ЗАКОНОМЕРНОСТИ РАСПРЕДЕЛЕНИЯ УРАНА В ПОДЗЕМНЫХ ВОДАХ ПРОМПЛОЩАДКИ ЧАЭС

Наблюдаемое значительное повышение объемных активностей урана (2 - 12 раз) в пробах подземных вод из скважин, расположенных вблизи объекта «Укрытие», происходит при росте pH выше 9 - 10 на фоне повышения концентраций основных ионов: Na<sup>+</sup>, K<sup>+</sup>, CO<sub>3</sub><sup>2-</sup>, NO<sub>2</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>. При этом в подземных водах формируется сильнощелочная восстановительная или переходная среда.

*Ключевые слова:* промплощадка ЧАЭС, подземные воды, топливный уран, основные ионы, pH, повышенная миграция.

## M. I. Panasyuk, I. A. Lytvyn

Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, Chornobyl

### **REGULARITIES OF URANIUM DISTRIBUTION IN GROUNDWATER OF CHNPP INDUSTRIAL SITE**

Observed significant increase of migration properties of uranium from groundwater happens when pH rises above 9 - 10 against significant increases in the concentrations of major ions:  $Na^+$ ,  $K^+$ ,  $CO_3^{2-}$ ,  $NO_2^-$ ,  $NO_3^-$ . Herewith, strongly alkaline reducing or transitional environment in groundwater is formed.

Keywords: industrial site of ChNPP, underground waters, fuel uranium, plutonium, pH, major ions, raised migration.

## REFERENCES

- 1. *Belitskij A.S., Orlova E.I.* Protection of groundwater from radioactive contamination. Moskva: Meditsina, 1968. (Rus)
- 2. *Korotkov A. I., Pavlov A. N.* Hydrochemical method in geology and hydrogeology. - Leningrad: Nedra, 1972. (Rus)
- 3. *Krajnov S.R., Shvets V.M.* Hydrogeochemistry. Moskva: Nedra, 1972. (Rus)
- Radiohydroecological monitoring in the area of the object "Ukrytie". Step 2. Conducting of radiohydroecological monitoring for the second step of 2015 : Report on research work / Supervisor N. I. Panasyuk. No. FP 0115U005355. - Chernobyl, 2015. (Rus)
- Levchuk S., Kashparov V., Maloshtan I. et al. Migration of transuranic elements in groundwater from the near-surface radioactive waste site // Applied Geochemistry. - 2012. - Vol. 27, No. 7. - P. 1339 - 1347.
- Novikov A.P., Kalmykov A.N., Tkachev V.V. // Zh. Rossijskogo khimicheskogo obshchestva imeni D. I. Mendeleeva. - 2005. - Vol. XLIX, No. 2. -P. 119 - 126. (Rus)
- Kornilovich B.Yu., Pshinko G.N., Koval'chuk I.A. // Radiokhimiya. - 2001. - Vol. 43, No. 5. - P. 464 - 467. (Rus)
- Panasyuk N.I. // Problemy bezpeky atomnykh elektrostantsii i Chornobylya. - 2010. - Iss. 13. -P. 128 - 135. (Rus)
- Rudenko L.I., Khan V.E.-I., Panasyuk N.I. // Radiokhimiya. - 2003. - Vol. 45, No. 3. - P. 268 - 272. (Rus)

- 10. *Rudenko L.I., Khan V. E.-I.* // Radiokhimiya. 2005. - Vol. 47, No. 1. - P. 89 - 90. (Rus)
- 11. *Migration* of alpha-radionuclides from the object "Ukryttya" to the groundwater and the mechanism for their realization : annotated report on research work / Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine. - Kyiv, 2010. (Ukr)
- 12. *Investigation* of the composition of alpha emitting radionuclides in the groundwaters of the industrial site of the Chernobyl NPP: Stage 2012. Investigation of the phase distribution of cesium, strontium, uranium and transuranium elements concentration : Interim report on research work / Supervisor L. I. Rudenko; № ДР 0111U002825; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine. Kyiv, 2012. (Ukr)
- Garrels R.M., Christ C.L. Solutions, Minerals, and Equilibria. - San Francisco: Freeman, Cooper & Co., 1965. - 450 p.
- Pourbaix M.J.N. Thermodynamics of Dulite Aqueous Solutions. - London: Edwar Arnold and Co., 1949. - 136 p.
- 15. Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases. Geological Survey of Japan Open File Report No. 419 / National Institute of Advanced Industrial Science and Technology. Research Center for Deep Geological Environments. Naoto TAKENO. May 2005.

Надійшла 05.10.2016 Received 05.10.2016