Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2006, volume 7, issue 2, pages 7-15.
Section: Nuclear Physics.
Received: 04.07.2006; Published online: 30.12.2006.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2006.02.007

Nuclear g-factors and structure of the high-spin isomers in 190,192,194Pt

A. I. Levon, I. B. Kovgar, Yu. V. Nosenko, V. A. Onischuk, A. A. Schevchuk

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: Integral perturbed angular distribution method in an external magnetic field has been used to measure the g-factors of isomers in the 190,192,194Pt, populated in the (α, 2n)-reaction. The results are as follows: 190Pt, g(12+) = -0.17(12), g(10-) = -0.0016(36), g(7-) = +0.62(9); 192Pt, g(12+) = -0.18(9), g(10-) = -0.0012(10), g(7-) = 0.48(12); 194Pt, g(12+, new assignment) = 0.17(7), g(7-) = +0.26(8). The 12+ states have the rotational-aligned (νi -213/2) structure. The missing rotation-aligned (νi-213/2)12+ state is suggested to be isomeric in 194Pt (instead of the 10+ state) and to which the g = -0.17(6) value has to be attributed. From the g-factors of the 10- states in 190Pt and 192Pt, which have the configuration ν9/2-[505]⊗ ν11/2+[615], the anomalous gl-factor for neutrons has been derived as δgl = -0.028(6). Positive values of g-factors of the 7- isomers confirm the prediction of the non-axial rotor + 2 quasiparticles model about the change of the intrinsic structure from mainly (νi13/2, νj) to mainly (πh11/2, πj) in transition from Hg to Pt nuclei.

References:

1. Sergolle H., Aguer P., Bastin G. et al. Z. Phys. A 313 (1983) 289. https://doi.org/10.1007/BF01439480

2. Hjorth S. A., Lee I. Y., Beene J. R. et al. Phys. Rev. Lett. 45 (1980) 878. https://doi.org/10.1103/PhysRevLett.45.878

3. Kroth R., Bhettacherjee S. K., Günther Ch. et al. Phys. Lett. B 97 (1980) 197. https://doi.org/10.1016/0370-2693(80)90581-X

4. Gorbachev B. I., Levon A. I., Nemets O. F. et al. Yad. Fiz. (Sov. J. Nucl. Phys.) 39 (1984) 518.

5. Piiparinen M., Cunnane J. C., Daly P. J. et al. Phys. Rev. Lett. 34 (1975) 1110. https://doi.org/10.1103/PhysRevLett.34.1110

6. Hjorth S. A., Johnson A., Lindblad Th. et al. Nucl. Phys. A 262 (1976) 328. https://doi.org/10.1016/0375-9474(76)90625-4

7. Cunnane J. C., Piiparinen M., Daly P. J. et al. Phys. Rev. C 13 (1976) 2197. https://doi.org/10.1103/PhysRevC.13.2197

8. Levon A. I., de Boer J., Pozdnyak R. S. et al. Europ. Conf. on Advances in Nucl. Phys. and Related Areas (Thessaloniki, Greece, 8 - 12 July, 1997).

9. Левон A. И., Немец O. Ф. Электромагнитные моменты возбужденных и радиоактивных ядер (Київ: Наук. думка, 1989) c. 471.

10. Browne E., Singh B. Nucl. Data Sheets 79 (1996) 277. https://doi.org/10.1006/ndsh.1996.0013

11. Shirley V. S. Nucl. Data Sheets 64 (1991) 205. https://doi.org/10.1016/S0090-3752(05)80015-8

12. Singh B. Nucl. Data Sheets 61 (1990) 243. https://doi.org/10.1016/S0090-3752(05)80117-6

13. Funke L., Kemnitz P., Winter G. et al. Phys. Lett. B 55 (1975) 436. https://doi.org/10.1016/0370-2693(75)90549-3

14. Frauendorf S. Phys. Lett. B 100 (1981) 219. https://doi.org/10.1016/0370-2693(81)90320-8

15. Yadav H. L., Toki H., Faessler A. Phys. Rev. Lett. 39 (1977) 1128. https://doi.org/10.1103/PhysRevLett.39.1128

16. Jones G. A., Podolyak Zs., Schunck N. et al. Acta Phys. Polonica B 36 (2005) 1323.

17. Kroth R., Hardt K., Guttormsen M. et al. Phys. Lett. B 99 (1981) 209. https://doi.org/10.1016/0370-2693(81)91109-6

18. Yadav H. L., Faessler A., Toki H. et al. Phys. Lett. B 39 (1980) 307. https://doi.org/10.1016/0370-2693(80)90130-6

19. Harmetz B., Handley T. H. Nucl. Phys. 56 (1964) 1. https://doi.org/10.1016/0029-5582(64)90451-1

20. Ohya S., Ohtsubo T., Kometsuzaki K. et al. Phys. Rev. C 54 (1996) 1129. https://doi.org/10.1103/PhysRevC.54.1129

21. Stuchbery A. E., Anderssen S. S., Bolotin H. H. et al. Nucl. Phys. A 342 (1992) 373. https://doi.org/10.1007/BF01294946

22. Schütz G., Hagn E., Kienle P. et al. Phys. Rev. Lett. 56 (1986) 1051. https://doi.org/10.1103/PhysRevLett.56.1051

23. Bodenstedt E., Hamer B., Herzog P. et al. Z. Phys. A 342 (1992) 249. https://doi.org/10.1007/BF01291506

24. Stuchbery A. E., Lampard G. J., Bolotin H. H. Nucl. Phys. A 528 (1991) 447. https://doi.org/10.1016/0375-9474(91)90098-Q

25. Yamazaki T. Mesons in Nuclei 2 (1979) 651.

26. Bengtsson R., Bengtsson T., Dudek J. et al. Phys. Lett. B 183 (1987) 1. https://doi.org/10.1016/0370-2693(87)91406-7

27. Raman S., Nestor J., Kahane S. et al. At. Data Nucl. Data Tables 42 (1989) 1. https://doi.org/10.1016/0092-640X(89)90031-4

28. Jain A. K., Sheline R. K., Sood P. C. et al. Rev. Mod. Phys. 62 (1990) 393. https://doi.org/10.1103/RevModPhys.62.393

29. Yamazaki T. Phys. Lett. B 60 (1985) 227. https://doi.org/10.1080/00357529.1985.11764412

30. The European Muon Collaboration. Phys. Lett. B 123 (1983) 275. https://doi.org/10.1016/0370-2693(83)90437-9

31. Toki H., Neergård K., Vogel P. et al. Nucl. Phys. A 279 (1977) 1. https://doi.org/10.1016/0375-9474(77)90417-1

32. Neergård K., Vogel P., Radomski M. Nucl. Phys. A 238 (1975) 199. https://doi.org/10.1016/0375-9474(75)90349-8