Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2016, volume 17, issue 2, pages 189-198.
Section: Radiobiology and Radioecology.
Received: 12.04.2016; Accepted: 29.06.2016; Published online: 10.08.2016.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2016.02.189

Optimization of fish sampling procedure for evaluating the specific activity of 137Cs, 90Sr and accumulation coefficients

Yu. V. Khomutinin*, V. O. Kashparov

Ukrainian Institute of Agricultural Radiology of NUBiP of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: yuriy@uiar.kiev.ua

Abstract: Problem of optimization of sampling procedure for evaluating the median of specific activity and accumulation coefficients of the 137Cs and 90Sr for the populations of different species of fish lived in the pond was observed. Estimates of the geometric standard deviation of the specific activity (1.2 ÷ 1.9) and accumulation coefficients (1.8 ÷ 2.3) of radionuclides for different species of fish were obtained. Minimum number of samples required for evaluating the median of the specific activity and corresponding accumulation coefficients of 137Cs and 90Sr with desired relative error was determined. In order to obtain the median value of the specific activity of 137Cs with relative error δ = 20 % and confidence level of p = 0.95 at the time of harvest the following numbers of fish samples should be selected for the activity measurement: 16 - 20 samples of pike, perch, sunder, rudd and grass carp; 10 - 13 samples of catfish, bream, tench, carassius, pelecus cultratus; 8-9 samples of bream, roach, carp (common carp), bighead carp; and 5 samples of chub.

Keywords: 137Cs, 90Sr, fish, specific activity, accumulation coefficients, Chornobyl accident.

References:

1. A. Broberg, E. Andersson. Distribution and circulation of Cs-137 in lake ecosystem. In: The Chernobyl Fallout in Sweden. Ed. L. Moberg (The Swedish Radiation Protection Institute, 1991) p. 151. INIS

2. I.N. Ryabov. Radioecology of Ponds Fish in the Zone of the Chernobyl Accident: Based on Field Research (Moskva: Publishing House of the Association of Scientific Knowledge, 2004) 215 p. (Rus)

3. J.T. Smith, A.V. Kudelsky, I.N. Ryabov et al. Uptake and elimination of radiocesium in fish and the “size effect”. Journal of Environmental Radioactivity 62 (2002) 145. https://doi.org/10.1016/S0265-931X(01)00157-6

4. O.L. Zarubin, V.A. Kostyuk, I.A. Malyuk, A.A. Zalisskij. Yaderna F³zyka ta Energetyka (Nucl. Phys. At. Energy) 13(2) (2012) 175. (Rus) https://jnpae.kinr.kyiv.ua/13.2/Articles_PDF/jnpae-2012-13-0175-Zarubin.pdf

5. O.L. Zarubin. Gidrobiologicheskij zhurnal 41(2) (2005) 58. (Rus)

6. O.L. Zarubin, A.A. Zalisskij, V.A. Kostyuk et al. Specific content of 137Cs in Rutilus Rutilus (L.) muscles depending on weight of the individual. Yaderna F³zyka ta Energetyka (Nucl. Phys. At. Energy) 11(2) (2010) 191. (Rus) https://jnpae.kinr.kyiv.ua/11.2/Articles_PDF/jnpae-2010-11-0191-Zarubin.pdf

7. I.I. Kryshev, T.G. Sazykina, I.N. Ryabov et al. Model testing using Chernobyl data: II. Assessment of the consequences of the radioactive contamination of the Chernobyl nuclear power plant cooling pond. Health Physics 70(1) (1996) 13. Paper

8. J.T. Smith, N.V. Sasina, A.I. Kryshev et al. A review and blind test of predictive models for the bioaccumulation of radiostrontium in fish. Journal of Environmental Radioactivity 100 (2009) 950. https://doi.org/10.1016/j.jenvrad.2009.07.005

9. L. Hakanson. A compilation of empirical data and variations in data concerning radiocesium in water, sediments and fish in European lakes after Chernobyl. Journal of Environmental Radioactivity 44 (1999) 21. https://doi.org/10.1016/S0265-931X(98)00072-1

10. T.K. Oleksyk, S.P. Gashchak, T.C. Glenn et al. Frequency distributions of 137Cs in fish and mammal populations. Journal of Environmental Radioactivity 61 (2002) 55. https://doi.org/10.1016/S0265-931X(01)00114-X

11. Yu.V. Khomutinin, V.A. Kashparov, A.V. Kuz'menko, V.V. Pavlyuchenko. Radiatsyonnaya biologiya. Radioecologiya 53(4) (2013) 411. (Rus) Paper

12. Yu.V. Khomutinin. Evaluation of radioecological safety of freshwater reservoirs of Ukraine during late phase of ChNPP accident. Yaderna Fizyka ta Energetyka 15(4) (2014) 389. (Ukr) https://jnpae.kinr.kyiv.ua/15.4/Articles_PDF/jnpae-2014-15-0389-Khomutinin.pdf

13. Yu.V. Khomutinin, V.A. Kashparov, A.V. Kuzmenko. Radiatsionnaya biologiya. Radioekologiya. 51(3) (2011) 374. (Rus) Paper

14. M. Kendall, A. Stuart. Statistical Inference and Communication (Moskva: Nauka, 1973) 899 p. (Rus)

15. A. Afifi, S. Azen. Statistical Analysis: A Computer Oriented Approach (Moskva: Mir, 1992) 488 p. (Rus) Google Books

16. E.S. Wentzel, L.A. Ovcharov. The Theory of Random Processes and its Engineering Applications (Moskva: Nauka, 1991) 384 p. (Rus)

17. Technogenic Radionuclides in Freshwater Ecosystems. Ed. V.D. Romanenko (Kyiv: Naukova Dumka, 2010) 263 p. (Ukr)

18. O.L. Zarubin, O.O. Zalis'kyi. Chornobyl's'kyi naukovyi visnyk. Byuleten' Ekologichnogo Stanu Zony Vidchuzhennya ta Zony Bezumovnogo (Obov’yazkovogo) Vidselennya 2(36) (2010) 29. (Ukr)

19. Radiological consequences of the Chornobyl accident. Project No. 2. France-German Black and Chornobyl Initiative: Final report (Kyiv, 2002). (Rus)

20. N.V. Belova, N.G. Emel'yanova, A.P. Makeeva, I.N. Ryabov. Voprosy ikhtiologii 41(3) (2001) 358. (Rus)

21. O.L. Zarubin, A.A. Zalisskij, V.V. Belyaev et al. Gidrobiologicheskij zhurnal 47(5) (2011) 96. (Rus) http://hydrobiolog.narod.ru/2011/pdf_2011_5/zarubin_11.pdf

22. M.I. Kuzmenko, V.D. Romanenko, V.V. Derevets et al. Radionuclides in Aquatic Ecosystems of Ukraine. The Impact of Radioactive Contamination on Hidrobiosy of Exclusion Zone (Kyiv: Chornobylinterinform, 2001) 318 p. (Ukr)

23. V.V. Belyaev, E.N. Volkova, V.V. Skiba. Gidrobiologicheskij zhurnal 47(4) (2011) 113. (Rus) http://hydrobiolog.narod.ru/2011/pdf_2011_4/belyaev_11.pdf

24. V.D. Romanenko, M.I. Kuzmenko, N.Y. Yevtushenko et al. Radioactive and Chemical Contamination of the Dnieper River and its Reservoirs After the Chornobyl Accident (Kyiv: Naukova Dumka, 1992) 196 p. (Rus)

25. O.L. Zarubin. Gidrobiologicheskij zhurnal 44(1) (2008) 91. (Rus)

26. D.I. Gudkov, A.E. Kaglyan, S.I. Kireev et al. Radiatsionnaya biologiya. Radioekologiya 48(1) (2008) 48. (Rus) Paper

27. O.L. Zarubin. Gidrobiologicheskij zhurnal 46(2) (2010) 95. (Rus) http://hydrobiolog.narod.ru/2010/pdf_2010_2/zarubin_7.pdf

28. G. Zibold, E. Klemt. Ecological half-times of 137Cs and 90Sr in forest and freshwater ecosystems. Radioprotection 40 (2005) S497. https://doi.org/10.1051/radiopro:2005s1-073

29. A.I. Kryshev, I.N. Ryabov. Radiatsionnaya biologiya. Radioekologiya 45(3) (2005) 338. (Rus)

30. A.I. Ilienko, T.P. Krapivko. Animal ecology in the radiation biogeocoenoses (Moskva: Nauka, 1989) 224 p. (Rus)

31. T.P. Trapeznikova, A.V. Trapeznikov. Voprosy radiatsionnoj bezopasnosti 1 (2006) 35. (Rus)

32. A.O. Koulikov, M. Meili. Modelling the dynamics of fish contamination by Chernobyl radiocesium: an analytical solution based on potassium mass balance. Journal of Environmental Radioactivity 66 (2003) 309. https://doi.org/10.1016/S0265-931X(02)00134-0

33. A.I. Kryshev. Model reconstruction of 90Sr concentrations in fish from 16 Ural lakes contaminated by the Kyshtym accident of 1957. Journal of Environmental Radioactivity 64 (2003) 67. https://doi.org/10.1016/S0265-931X(02)00059-0