ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Isospin breaking in the pion-nucleon coupling constant and the nucleon-nucleon scattering length
V. A. Babenko*, N. M. PetrovAbstract: Charge independence breaking (CIB) in the pion-nucleon coupling constant and the nucleon-nucleon scattering length is considered on the basis of the Yukawa meson theory. CIB effect in these quantities is almost entirely explained by the mass difference between the charged and the neutral pions. Therewith charge splitting of the pion-nucleon coupling constant is almost the same as charge splitting of the pion mass. Calculated difference between the proton-proton and the neutron-proton scattering length in this case comprises ∼90% of the experimental value.
Keywords: charge independence, pion-nucleon coupling constant, nucleon-nucleon scattering, pion.
References:1. L. Hulthen, M. Sugawara. The Two-Nucleon Problem. In: Encyclopedia of Physics. Vol. 39. Structure of Atomic Nuclei. Ed. S. Flugge (Berlin-Gottingen-Heidelberg: Springer-Verlag, 1957) 1. https://doi.org/10.1007/978-3-642-45872-9_1
2. A. Bohr, B.R. Mottelson. Nuclear Structure. Vol. 1 (New York: Benjamin, 1969) 471 p. Google books
3. T. Ericson, W. Weise. Pions and Nuclei (Oxford: Clarendon Press, 1988) 479 p. Google books
4. G.A. Miller, B.M.K. Nefkens, I. Slaus. Charge Symmetry, Quarks and Mesons. Phys. Rept. 194(1-2) (1990) 1. https://doi.org/10.1016/0370-1573(90)90102-8
5. R. Machleidt, I. Slaus. The Nucleon-Nucleon Interaction. J. Phys. G 27(5) (2001) R69. https://doi.org/10.1088/0954-3899/27/5/201
6. J. Rahm, J. Blomgren, H. Conde et al. np-Scattering Measurements at 162 MeV and the πNN Coupling Constant. Phys. Rev. C 57(3) (1998) 1077. https://doi.org/10.1103/PhysRevC.57.1077
7. J. Blomgren (Ed.). Proc. Workshop on Critical Issues in the Determination of the Pion-Nucleon Coupling Constant, Uppsala, Sweden, June 7-8, 1999. Phys. Scr. T87 (2000) 5. https://doi.org/10.1088/0031-8949/2000/T87/E01
8. M. Naghdi. Nucleon-Nucleon Interaction: A Typical/Concise Review. Physics of Particles and Nuclei 45(5) (2014) 924. https://doi.org/10.1134/S1063779614050050
9. J.J. de Swart, M.C.M. Rentmeester, R.G.E. Timmermans. The Status of the Pion-Nucleon Coupling Constant. arXiv:nucl-th/9802084 (1998) 19 p. https://arxiv.org/abs/nucl-th/9802084
10. V. Stoks, R. Timmermans, J.J. de Swart. Pion-Nucleon Coupling Constant. Phys. Rev. C 47(2) (1993) 512. https://doi.org/10.1103/PhysRevC.47.512
11. J. Rahm, J. Blomgren, H. Conde et al. np-Scattering Measurements at 96 MeV. Phys. Rev. C 63(4) (2001) 044001. https://doi.org/10.1103/PhysRevC.63.044001
12. J.R. Bergervoet, P.C. van Campen, R.A.M. Klomp et al. Phase Shift Analysis of All Proton-Proton Scattering Data Below Tlab = 350 MeV. Phys. Rev. C 41(4) (1990) 1435. https://doi.org/10.1103/PhysRevC.41.1435
13. R.A. Arndt, I.I. Strakovsky, R.L. Workman. Extraction of the πNN Coupling Constant from NN Scattering Data. Phys. Rev. C 52(4) (1995) 2246. https://doi.org/10.1103/PhysRevC.52.2246
14. R. Machleidt, M.K. Banerjee. Charge Dependence of the πNN Coupling Constant and Charge Dependence of the Nucleon-Nucleon Interaction. Few-Body Syst. 28(3) (2000) 139. https://doi.org/10.1007/s006010070019
15. V. Limkaisang, K. Harada, J. Nagata et al. Phase-Shift Analysis of pp-Scattering at TL = 25 - 500 MeV. Prog. Theor. Phys. 105(2) (2001) 233. https://doi.org/10.1143/PTP.105.233
16. E. Matsinos, G. Rasche. Analysis of the Low-Energy π-p Charge-Exchange Data. Int. J. Mod. Phys. A 28(12) (2013) 1350039. https://doi.org/10.1142/S0217751X13500395
17. J.M. Alarcon, J. Martin Camalich, J.A. Oller. Improved Description of the πN-Scattering Phenomenology at Low Energies in Covariant Baryon Chiral Perturbation Theory. Ann. Phys. 336 (2013) 413. https://doi.org/10.1016/j.aop.2013.06.001
18. V.A. Babenko, N.M. Petrov. Charge Dependence of the Pion-Nucleon Coupling Constant. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 16(2) 136. (Rus) https://jnpae.kinr.kyiv.ua/16.2/Articles_PDF/jnpae-2015-16-0136-Babenko.pdf
19. V.A. Babenko, N.M. Petrov. Study of the Charge Dependence of the Pion-Nucleon Coupling Constant on the Basis of Data on Low-Energy Nucleon-Nucleon Interactions. Physics of Atomic Nuclei 79(1) (2016) 67. https://doi.org/10.1134/S1063778815090033
20. V.A. Babenko, N.M. Petrov. Study of the Pion-Nucleon Coupling Constant Charge Dependence on the Basis of the Low-Energy Data on Nucleon-Nucleon Interaction. arXiv:1604.02912 [nucl-th] (2016) 10 p. https://arxiv.org/abs/1604.02912
21. H. Yukawa. On the Interaction of Elementary Particles. Proc. Phys. Math. Soc. Jap. 17 (1935) 48.
22. R.W. Hackenburg. Neutron-Proton Effective Range Parameters and Zero-Energy Shape Dependence. Phys. Rev. C 73(4) (2006) 044002. https://doi.org/10.1103/PhysRevC.73.044002
23. V.A. Babenko, N.M. Petrov. Determination of Low-Energy Parameters of Neutron-Proton Scattering on the Basis of Modern Experimental Data from Partial-Wave Analyses. Physics of Atomic Nuclei 70(4) (2007) 669. https://doi.org/10.1134/S1063778807040072
24. V.A. Babenko, N.M. Petrov. Determination of Low-Energy Parameters of Neutron-Proton Scattering in the Shape-Parameter Approximation from Present-Day Experimental Data. Physics of Atomic Nuclei 73(9) (2010) 1499. https://doi.org/10.1134/S1063778810090048
25. V.A. Babenko, N.M. Petrov. Low-Energy Parameters of Neutron-Neutron Interaction in the Effective-Range Approximation. Physics of Atomic Nuclei 76(6) (2013) 684. https://doi.org/10.1134/S1063778813060033
26. J. Beringer et al. (Particle Data Group). Review of Particle Physics. Phys. Rev. D 86(1) (2012) 010001. https://doi.org/10.1103/PhysRevD.86.010001
27. I.S. Shapiro. The Interaction of Slow Antinucleons with Nucleons and Nuclei. Sov. Phys. Usp. 16 (1973) 173. https://doi.org/10.1070/PU1973v016n02ABEH005163
28. H. Frauenfelder, E.M. Henley. Subatomic Physics (Englewood Cliffs, New Jersey: Prentice-Hall, 1974) 568 p. Google Books
29. L.A. Sliv. Charge Independence and Charge Symmetry of Nuclear Forces. Izv. Akad. Nauk SSSR, Ser. Fiz. 38(1) (1974) 2. (Rus)
30. B. Kuhn. Measurements of the Neutron-Neutron Scattering Wave Length and the Problem of Charge Dependence of Nuclear Forces. Phys. Part. Nucl. 6(2) (1975) 347. (Rus)
31. Yu.A. Aleksandrov. Fundamental Properties of the Neutron (Oxford, UK: Clarendon Press, 1992) 210 p. Google Books
32. G.A. Miller, W.T.H. van Oers. Charge Independence and Charge Symmetry. arXiv:nucl-th/9409013 (1994) 41 p. https://arxiv.org/abs/nucl-th/9409013
33. A. Sugie. The Effect of the Mass Difference between Charged and Neutral Pions on the Nuclear Force. Prog. Theor. Phys. 11(3) (1954) 333. https://doi.org/10.1143/PTP.11.333
34. Riazuddin. On the Charge Independence of Nuclear Forces. Nucl. Phys. 2 (1956/57) 188. https://doi.org/10.1016/0029-5582(56)90046-3
35. Riazuddin. Charge Dependent Effects on Scattering Lengths of np and pp Systems. Nucl. Phys. 7 (1958) 217. https://doi.org/10.1016/0029-5582(58)90252-9
36. E.M. Henley, L.K. Morrison. n-n and n-p Scattering Lengths and Charge Independence. Phys. Rev. 141(4) (1966) 1489. https://doi.org/10.1103/PhysRev.141.1489
37. T.E.O. Ericson, G.A. Miller. Charge Dependence of Nuclear Forces. Phys. Lett. B 132(1-3) (1983) 32. https://doi.org/10.1016/0370-2693(83)90216-2
38. D.V. Bugg, A.A. Carter, J.R. Carter. New Values of Pion-Nucleon Scattering Lengths and f2. Phys. Lett. B 44(3) (1973) 278. https://doi.org/10.1016/0370-2693(73)90225-6
39. R. Koch, E. Pietarinen. Low-Energy πN Partial Wave Analysis. Nucl. Phys. A 336(3) (1980) 331. https://doi.org/10.1016/0375-9474(80)90214-6
40. O. Dumbrajs, R. Koch, H. Pilkuhn et al. Compilation of Coupling Constants and Low-Energy Parameters. Nucl. Phys. B 216(2) (1983) 277. https://doi.org/10.1016/0550-3213(83)90288-2
41. T.E.O. Ericson, B. Loiseau, J. Nilsson et al. πNN Coupling from High Precision np Charge Exchange at 162 MeV. Phys. Rev. Lett. 75(6) (1995) 1046. https://doi.org/10.1103/PhysRevLett.75.1046