ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Prompt gamma-rays from fast neutron capture in natNi
I. M. Kadenko1, V. A. Plujko1,*, B. M. Bondar1,2, O. M. Gorbachenko1, B. Yu. Leshchenko1,3,Abstract: The yield of prompt γ-rays produced by interaction of 14 MeV neutrons with natNi was measured using the time-of-flight technique. A differential cross section from (n, xγ) reactions was unfolded from amplitude spectrum. Experimental results were compared with theoretical calculations performed using EMPIRE 3.2 and TALYS 1.6 codes. The effect of average characteristics of nuclear excited states on calculated gamma ray spectrum was studied.
Keywords: fast neutrons, time-of-flight method, gamma-ray spectrum, Hauser - Feshbach model, photon strength function, nuclear level density.
References:1. R.A. Forrest. Nuclear data for fusion applications. Proc. Int. Conference on Nuclear Data for Science and Technology (ND'2007), May 22-27, 2007, Nice, France (2007) p. 11. https://doi.org/10.1051/ndata:07713
2. G.O. Prokopets, B.Yu. Leshchenko, Yu.M. Onishchuk, V.K. Basenko. Differential cross sections of prompt γ-rays in reactions produced by 14 MeV neutrons. Bulletin of the Kiev University. Physical and Mathematical Sciences 3 (1997) 423. (Ukr)
3. Yu.M. Onishchuk, B.Yu. Leshchenko. Problems with the processing of hardware gamma spectra of inelastic interaction of 14 MeV neutrons with nuclei. Zbirnyk Naukovykh Prats Instytutu Yadernykh Doslidzhen (1999) 127. (Ukr)
4. Yu.M. Onishchuk, B.Yu. Leshchenko. Methods of recovery from hardware gamma spectra cross section of gamma rays in a wide energy range by the interaction of 14.1 MeV neutrons with atomic nuclei. Materials of Scientific-Theoretical Conference in Honour of 165-th Anniversary of the Kyiv National University (Natural Sciences) (Kyiv, Kyiv University, 1999) 47. (Ukr)
5. V.Ì. Bondar, ².Ì. Kadenko, B.Yu. Leshchenko et al. Cross section of γ-rays irradiation in reactions of neutron absorption by iron. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 1(23) (2008) 16. (Ukr) https://jnpae.kinr.kyiv.ua/23(1)/Articles_PDF/jnpae-2008-1(23)-0016-Bondar.pdf
6. V.Ì. Bondar, ².N. Kadenko, B.E. Leshchenko et al. Cross section of prompt gamma-ray production by fast neutrons on iron and bismuth nuclei. Bulletin of the Russian Academy of Sciences: Physics 73(11) (2009) 1511. (Rus) https://doi.org/10.3103/S1062873809110203
7. V.M. Bondar, O.M. Gorbachenko, I.M. Kadenko et al. Spectra of gamma-rays in (n, xγ) reactions on ferrum and bismuth nuclei. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 11(3) (2010) 246. https://jnpae.kinr.kyiv.ua/11.3/Articles_PDF/jnpae-2010-11-0246-Bondar.pdf
8. B.M. Bondar, V.Ì. Bondar, O.M. Gorbachenko et al. Cross sections of prompt γ-ray production induced by interactions of fast neutrons with cadmium. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 12(2) (2011) 129. (Ukr) https://jnpae.kinr.kyiv.ua/12.2/Articles_PDF/jnpae-2011-12-0129-Bondar.pdf
9. G.M. Gurevich, V.M. Mazur, G.V. Solodukhov. Apparatus function of scintillation γ-spectrometer based on large NaI(Tl) detector. Instruments and Experimental Techniques 2 (1975) 59. (Rus)
10. R.P. Gardner, A. Carnesale, J.T. Conway. The solid angle subtended at a point by a circular disk. Nuclear Instruments and Methods 73 (1969) 228. https://doi.org/10.1016/0029-554X(69)90214-6
11. D.M. van Patter, N. Nath, S.M. Shafroth et al. Gamma Rays from Inelastic Neutron Scattering in Chromium. Phys. Rev. 128 (1962) 1246. https://doi.org/10.1103/PhysRev.128.1246
12. M.J. Berger, J.H. Hubbell, S.M. Seltzer et al. XCOM: Photon Cross Section Database (version 3.1). (Gaithersburg, National Institute of Standards and Technology, 2010). https://physics.nist.gov/xcom
13. J.T. Conway. Geometric efficiency for a circular detector and a ring source of arbitrary orientation and position. Nuclear Instruments and Methods in Physics Research A 640 (2011) 99. https://doi.org/10.1016/j.nima.2011.03.014
14. S. Jovanovic, A. Dlabac, N. Mihaljevic. ANGLE v2.1 - New version of the computer code for semiconductor detector gamma-efficiency calculations. Nuclear Instruments and Methods in Physics Research A 622 (2010) 385. https://doi.org/10.1016/j.nima.2010.02.058
15. R.L. Heath. Scintillation Spectrometry: Gamma-ray Spectrum Catalogue. Revised edition of IDO-16880-1, Original issued: August 1964, Rev. electronic report update: February 1997. Vol. 1. http://sites.fas.harvard.edu/~phys191r/Bench_Notes/B1/NAI_catalog.pdf
16. A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov et al. Numerical methods for the solution of ill-posed problems (Moscow, 1995) 253 p. Google Books
17. D.M. Drake, E.D. Arthur, M.G. Silbert. Cross section for gamma-ray production by 14-MeV neutrons. Nuclear Science and Engineering 65 (1978) 49. EXFOR subentry #10684010. https://doi.org/10.13182/NSE78-A27125
18. J.T. Prud'homme, I.L. Morgan, J.H. McCrary et al. A study of neutrons and gamma rays from neutron induced reactions in several elements. Rept: Air Force Spec. Weap. Center, Kirtland A.F.B.Reports 60 (1960) 30. EXFOR subentry #11183010.
19. K. Shin, T. Hasegawa, T. Hyodo. (n, xγ) and (n, xn) cross sections of molybdenum, titanium and nickel for 15-MeV neutrons. J. Nuclear Science and Technology 17(7) (1980) 531. EXFOR subentry #21727004. http://dx.doi.org/10.1080/18811248.1980.9732619
20. Yu.Ya. Nefedov, V.I. Nagornyj, V.I. Semenov et al. Gamma-ray production cross-section and spectrum measurement results for inelastic interaction of 14 MeV neutrons with nuclei of Na, S, Cl, Ti, V, Cr, Ni, Zn, Ge, Nb, Cd, In, Sn, Bi, 235U and 238U. Problems of Atomic Science and Technology. Series: Nuclear Constants 1 (2000) 7. (Rus). EXFOR subentry #41379008. https://vant.ippe.ru/year2000/1/neutron-constants/876-2.html
21. M. Herman, R. Capote, B.V. Carlson et al. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation. Nuclear Data Sheets 108 (2007) 2655. https://doi.org/10.1016/j.nds.2007.11.003; http://www.nndc.bnl.gov/empire/
22. A.J. Koning, S. Hilaire, M.C. Duijvestijn. TALYS-1.0. Proc. of the Intern. Conf. on Nuclear Data for Science and Technology (ND'2007), April 22 - 27, 2007, Nice, France (2007) p. 211. https://doi.org/10.1051/ndata:07767; http://www.talys.eu/
23. A.J. Koning, J.P. Delaroche. Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713 (2003) 231. https://doi.org/10.1016/S0375-9474(02)01321-0
24. R. Capote, M. Herman, P. Oblozinsky et al. Parameters for calculation of nuclear reactions of relevance for energy and non-energy nuclear applications. Nuclear Data Sheets 110 (2009) 3107. https://doi.org/10.1016/j.nds.2009.10.004; http://www-nds.iaea.org/RIPL-3/
25. V.A. Plujko, R. Capote, O.M. Gorbachenko. Giant Dipole Resonance parameters with uncertainties from photonuclear cross sections. Atomic Data and Nuclear Data Tables 97 (2011) 567. https://doi.org/10.1016/j.adt.2011.04.001
26. V.A. Plujko, O.M. Gorbachenko, E.P. Rovenskykh, V.A. Zheltonozhskii. Average description of dipole gamma transitions in hot atomic nuclei. Nuclear Data Sheets 118 (2014) 237. https://doi.org/10.1016/j.nds.2014.04.046
27. V.A. Plujko, O.M. Gorbachenko, B.M. Bondar, E.P. Rovenskykh. Nuclear level density within extended superfluid model with collective state enhancement. Nuclear Data Sheets 118 (2014) 240. https://doi.org/10.1016/j.nds.2014.04.047