Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2016, volume 17, issue 1, pages 47-52.
Section: Radiation Physics.
Received: 21.01.2016; Accepted: 11.04.2016; Published online: 02.06.2016.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2016.01.047

Radiation defects parameters determination in n-Ge single crystals irradiated by high-energy electrons

S. V. Luniov1,*, A. I. Zimych1, P. F. Nazarchuk1, V. T. Maslyuk2, I. G. Megela2

1 Lutsk National Technical University, Lutsk, Ukraine
2 Institute of Electron Physics, National Academy of Sciences of Ukraine, Uzhhorod, Ukraine


*Corresponding author. E-mail address: luniovser@ukr.net.

Abstract: Hall effect for single crystals of n-Ge, irradiated by various streams of electrons with an energy of 10 MeV is investigated. Taking into account the experimental results, the energy spectrum of radiation defects is found and their parameters are established. On the basis of solutions of electroneutrality equations systems, it is shown that the created radiation defects correspond to only two deep energy levels (Ec - 0.27) eV and (Ec + 0.27) eV. A slight change of energy position of these levels with irradiation dose increasing can be explained by internal mechanical stresses influence that arise in the germanium lattice around created radiation defects.

Keywords: radiation defects, deep levels, internal stress, single crystals of germanium.

References:

1. V.M. Koshkin, N.V. Volovichev, Yu.G. Gurevich et al. Materials and devices with a huge resource of radiation. Materials of scintillation techniques (Kharkiv: Institute for Single Crystals, 2006) 60 p. (Rus) Book

2. Radiation semiconductor technology problems. Ed. L.S. Smirnov (Novosibirsk: Nauka, 1980) 291 p. (Rus)

3. C. Claes, E. Simoen. Germanium-Based Technologies: From Materials to Devices (Elsevier Science, 2007) 476 p. Book

4. S. Levy, I. Shlimak, D.H. Dressler et al. Structure and Spatial Distribution of Ge Nanocrystals Subjected to Fast Neutron Irradiation. Nanomater. Nanotechnol. 1 (2011) 52. https://doi.org/10.5772/50951

5. K.E. Krasilnik, A.N. Kudryavtsev, D.N. Kachemtsev et al. Comparative analysis of radiation effects on the electroluminescence of Si and SiGe/Si(001) heterostructures with self-assembled Islands. Semiconductors 45(2) (2011) 225. https://doi.org/10.1134/S1063782611020126

6. N.A. Sobolev. Radiation effects in Si-Ge quantum size structure. Semiconductors 47(2) (2013) 217. https://doi.org/10.1134/S1063782613020188

7. R.A. Andrievski. Nanostructures under extremes. Phys. Usp. 57(10) (2014) 945. https://doi.org/10.3367/UFNe.0184.201410a.1017

8. N.A. Azarenkov, V.N. Voevodyn, V.G. Kyrychenko, G.P. Kovtun. Visnyk Kharkiv. universytetu imeni V.N. Karazina. Ser.: Fizychna "Yadra, chastynky, polya" 887(1/45) (2010) 4. (Rus)

9. V.V. Uglov. Radiation effects in solids (Minsk: BSU, 2007) 167. (Rus) Book

10. A.P. Dolgolenko. Modification of radiation defects in Si and Ge by background impurity. Nuclear Physics and Atomic Energy 14(4) (2013) 377. https://jnpae.kinr.kyiv.ua/14.4/Articles_Pdf/jnpae-2013-14-0377-Dolgolenko.pdf

11. P.M. Mooney, F. Poulin, J.C. Bourgoin. Annealing of electron-induced defects in n-type germanium. Phys. Rev. B 28(6) (1983) 3372. https://doi.org/10.1103/PhysRevB.28.3372

12. K.T. Roro, P.J. van Rensburg Janse, F.D. Auret, S. Coelho. Effect of alpha-particle irradiation on the elec-trical properties of n-type Ge. Physica B: Condensed Matter 404 (2009) 4496. https://doi.org/10.1016/j.physb.2009.09.033

13. N.S. Patel, C. Monmeyran, A. Agarwal, L.C. Kimerling. Point defect states in Sb-doped germanium. J. Appl. Phys. 118 (2015) 155702. http://dx.doi.org/10.1063/1.4933384

14. H.J. Stein. Light-Sensitive Defect Formation by Electron and Neutron Irradiation of n- and p-type Germanium near 80 K. J. Appl. Phys. 43 (1972) 138. http://doi.org/10.1063/1.1660797

15. A.P. Dolgolenko, P.G. Litovchenko, M.D. Varentsov et al. Particularities of the formation of radiation defects in silicon with low and high concentration of oxygen. Phys. Stat. Sol. (b) 243(8) (2006) 1842. http://doi.org/10.1002/pssb.200541074

16. N.A. Vitovskij, V.V. Emtsev, T.V. Mashovets, V.V. Mikhnovich. FTP 23(1) (1989) 184. (Rus)

17. J. Fage-Pedersen, A.N. Larsen, A. Mesli. Irradiation-induced defects in Ge studied by transient spectroscopies. Phys. Rev. B 62(15) (2000) 10116. https://doi.org/10.1103/PhysRevB.62.10116

18. P.S. Kireev. Physics of Semiconductors (Moskva: Vysshya shkola, 1969) 590 p. (Rus)

19. L.S. Novikov, E.N. Voronina. Prospects for the use of nanomaterials in space technology (Moskva: University Book, 2008) 188 p. (Rus)

20. L. Novikov, E. Voronina. Modeling of radiation effects on nanostructures features. Proc. of XIII Intercolleges scientific school of young professionals "Concentrated energy flows in the space technology, electronics, ecology and medicine". Ed. B.S. Ishkhanov, L.S. Novikov (Moskva: SINP, 2012) 133. (Rus)

21. E.A. Tarasova. Simulation of HEMT radiation hardness. Vestnik Nizhegorodskogo universiteta imeni N.I. Lobachevskogo 1(2) (2014) 100. (Rus) http://www.unn.ru/pages/e-library/vestnik/19931778_2014_-_1-2_unicode/15.pdf