![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Radiation hardness of silicon doped by germanium with high concentration of free oxygen
M. D. Varentsov, G. P. Gaidar, A. P. Dolgolenko, P. G. Litovchenko
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: Radiation hardness of Czochralski grown n-type silicon samples, doped by germanium (NGe = 2 · 1020 cm-3) and without that was investigated after irradiaton by fast neutrons of WWR-M reactor at room temperature. The dependence of effective carrier concentration on fluence was described in the framework of the improved Gossick's model. It was found that the introduction of germanium leaded to the increase of n-Si radiation hardness by factor of seven. The isothermal annealing of n-Si<Ge> after fluence 1.4 · 1014 no · cm-2 was studied for three temperatures. It was shown that the annealing of defect clusters is caused by the annihilation of vacancy type defects in clusters with the interstitial defects. Migration energy and frequency factor for di-interstitial (Е1 = 0.74 eV; ν1 = 3.5 · 106 s-1), for silicon interstitial atom (Е2 = 0.91 eV; ν2 = 7 · 107 s-1) and for vacancy (Еv = 0.8 eV; ν = 1 · 107 s-1) were determined.
References:1. Кустов В. Е., Мильвидский М. Г., Семенов Ю. Г. и др. Деформационные заряды изовалентных примесей в кремнии. Физика и техника полупроводников 20 (1986) 270.
2. Хируненко Л. И., Шаховцов В. И., Шумов В. В. Радиационное дефектообразование в кремнии, легированном германием, при низкотемпературном облучении. Физика и техника полупроводников 32 (1998) 132.
3. Watkins G. D. Trans. IEEE 16 (1969) 13. https://doi.org/10.1109/TNS.1969.4325498
4. Budtz-Jorgensen C. V., Kringhoj P., Nylandsted Larsen A., Abrosimov N. V. Deep-level transient spectroscopy of the Ge-vacancy pair in Ge-doped n-type silicon. Phys. Rev. B 58 (1998) 1110. https://doi.org/10.1103/PhysRevB.58.1110
5. Помозов Ю. В., Соснин М. Г., Хируненко Л. И. и др. Кислородсодержащие радиационные дефекты в Si1-xGex. Физика и техника полупроводников 34 (2000) 1030.
6. Хируненко Л. И., Шаховцов В. И., Шинкаренко В. К. и др. Особенности процессов радиационного дефектообразования в кристаллах Si<Ge>. Физика и техника полупроводников 21 (1987) 562.
7. Dolgolenko A. P., Fishchuk I. I. Defect Clusters and Simple Defect Build-up Kinetics in Fast-Neutron Irradiated n-Si. phys. stat. sol. (a) 50 (1978) 751. https://doi.org/10.1002/pssa.2210500248
8. Томпсон М. Дефекты и радиационные повреждения в металлах (Москва: Мир, 1971) 367 с.
9. Gossick B. R. Disordered Regions in Semiconductors Bombarded by Fast Neutrons. J. Appl. Phys. 30 (1959) 1214. https://doi.org/10.1063/1.1735295
10. Dolgolenko A. P. Variation of Carrier Removal Rate with Irradiation Dose in Fast-Pile Neutron Irradiated n-Si. phys. stat. sol. (a) 179 (2000) 179. https://doi.org/10.1002/1521-396X(200005)179:1%3C179::AID-PSSA179%3E3.0.CO;2-3
11. Dolgolenko A. P., Litovchenko P. G., Litovchenko A. P. et al. Influence of growing and doping methods on radiation hardness of n-Si irradiated by fast-pile neutrons. Semiconductor Physics, Quantum Electronics & Optoelectronics 7 (2004) 8. https://doi.org/10.15407/spqeo7.01.008
12. Коноплева Р. Ф., Остроумов В. Н. Взаимодействие заряженных частиц высоких энергий с германием и кремнием (Москва: Атомиздат, 1975) 128 с.
13. Долголенко А. П., Литовченко П. Г., Варенцов М. Д. и др. Особенности образования радиационных дефектов в кремнии с низкой и высокой концентрацией свободного кислорода. Зб. наук. праць Ін-ту ядерних досл. 6 (2005) 106. https://jnpae.kinr.kyiv.ua/06.2/Articles_PDF/jnpae-2005-06-2-106.pdf
14. Huhtinen M. Simulation of non-ionising energy loss and defect formation in silicon. Nucl. Instrum. Meth. A 491 (2002) 194. https://doi.org/10.1016/S0168-9002(02)01227-5
15. Долголенко А. П., Литовченко П. Г., Литовченко А. П. Влияние облучения 24 ГэВ протонами на электрофизические свойства высокоомного кремния n-типа. Матеріали щорічн. наук. конф. ІЯД НАН України: Зб. наук. праць (1998) c. 184.
16. Goedecker S., Deutsch Th., Billard L. A Fourfold Coordinated Point Defect in Silicon. Phys. Rev. Lett. 88 (2002) 235501. https://doi.org/10.1103/PhysRevLett.88.235501
17. Whan R. E. Oxygen-Defect Complexes in Neutron-Irradiated Silicon. J. Appl. Phys. 37 (1966) 3378. https://doi.org/10.1063/1.1708867
18. Whan R. E. Oxygen-Defect Complexes in Neutron-Irradiated Germanium. J. Appl. Phys. 37 (1966) 2435. https://doi.org/10.1063/1.1708832
19. Челядинский А. Р., Комаров Ф. Ф. Дефектно-примесная инженерия в имплантированном кремнии. Успехи физических наук 173 (2003) 813.
20. Watts S. J., Da Via C., Karpenko A. Macroscopic results for a novel oxygenated silicon material. Nucl. Instrum. and Meth. in Phys. Res. A 485 (2002) 153. https://doi.org/10.1016/S0168-9002(02)00547-8
21. Libertino S., Coffa S. Room Temperature Point Defect Migration in Crystalline Si. Solid State Phenomena 82-84 (2002) 207. https://doi.org/10.4028/www.scientific.net/SSP.82-84.207
22. Bonafos C., Mathiot D., Claverie A. Ostwald ripening of end-of-range defects in silicon. J. Appl. Phys. 83 (1998) 3008. https://doi.org/10.1063/1.367056
23. Pankratz J. M., Sprague J. A., Rudee M. L. Investigation of Neutron-Irradiation Damage in Silicon by Transmission Electron Microscopy. J. Appl. Phys. 39 (1968) 101. https://doi.org/10.1063/1.1655713